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Abstract

We investigate the representation power of graph neural networks in the semi-
supervised node classification task under heterophily or low homophily, i.e., in
networks where connected nodes may have different class labels and dissimilar
features. Many popular GNNs fail to generalize to this setting, and are even
outperformed by models that ignore the graph structure (e.g., multilayer percep-
trons). Motivated by this limitation, we identify a set of key designs—ego- and
neighbor-embedding separation, higher-order neighborhoods, and combination of
intermediate representations—that boost learning from the graph structure under
heterophily. We combine them into a graph neural network, H2GCN, which we
use as the base method to empirically evaluate the effectiveness of the identified
designs. Going beyond the traditional benchmarks with strong homophily, our
empirical analysis shows that the identified designs increase the accuracy of GNNs
by up to 40% and 27% over models without them on synthetic and real networks
with heterophily, respectively, and yield competitive performance under homophily.

1 Introduction

We focus on the effectiveness of graph neural networks (GNNs) [42] in tackling the semi-supervised
node classification task in challenging settings: the goal of the task is to infer the unknown labels of
the nodes by using the network structure [44], given partially labeled networks with node features
(or attributes). Unlike most prior work that considers networks with strong homophily, we study the
representation power of GNNs in settings with different levels of homophily or class label smoothness.

Homophily is a key principle of many real-world networks, whereby linked nodes often belong to the
same class or have similar features (“birds of a feather flock together”) [21]. For example, friends are
likely to have similar political beliefs or age, and papers tend to cite papers from the same research
area [23]. GNNs model the homophily principle by propagating features and aggregating them
within various graph neighborhoods via different mechanisms (e.g., averaging, LSTM) [17, 11, 36].
However, in the real world, there are also settings where “opposites attract”, leading to networks with
heterophily: linked nodes are likely from different classes or have dissimilar features. For instance,
the majority of people tend to connect with people of the opposite gender in dating networks, different
amino acid types are more likely to connect in protein structures, fraudsters are more likely to connect
to accomplices than to other fraudsters in online purchasing networks [24].

Since many existing GNNs assume strong homophily, they fail to generalize to networks with
heterophily (or low/medium level of homophily). In such cases, we find that even models that ignore
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the graph structure altogether, such as multilayer perceptrons or MLPs, can outperform a number of
existing GNNs. Motivated by this limitation, we make the following contributions:

• Current Limitations: We reveal the limitation of GNNs to learn over networks with heterophily,
which is ignored in the literature due to evaluation on few benchmarks with similar properties. § 3

• Key Designs for Heterophily & New Model: We identify a set of key designs that can boost learn-
ing from the graph structure in heterophily without trading off accuracy in homophily: (D1) ego-
and neighbor-embedding separation, (D2) higher-order neighborhoods, and (D3) combination of
intermediate representations. We justify the designs theoretically, and combine them into a model,
H2GCN, that effectively adapts to both heterophily and homophily. We compare it to prior GNN
models, and make our code and data available at https://github.com/GemsLab/H2GCN. § 3-4

• Extensive Empirical Evaluation: We empirically analyze our model and competitive existing
GNN models on both synthetic and real networks covering the full spectrum of low-to-high
homophily (besides the typically-used benchmarks with strong homophily only). In synthetic
networks, our detailed ablation study of H2GCN (which is free of confounding designs) shows
that the identified designs result in up to 40% performance gain in heterophily. In real networks,
we observe that GNN models utilizing even a subset of our identified designs outperform popular
models without them by up to 27% in heterophily, while being competitive in homophily. § 5

2 Notation and Preliminaries

Figure 1: Neighborhoods.

We summarize our notation in Table A.1 (App. A). Let G = (V, E) be
an undirected, unweighted graph with nodeset V and edgeset E . We
denote a general neighborhood centered around v as N(v) (G may
have self-loops), the corresponding neighborhood that does not include
the ego (node v) as N̄(v), and the general neighbors of node v at
exactly i hops/steps away (minimum distance) as Ni(v). For example,
N1(v) = {u : (u, v) ∈ E} are the immediate neighbors of v. Other
examples are shown in Fig. 1. We represent the graph by its adjacency
matrix A ∈ {0, 1}n×n and its node feature matrix X ∈ Rn×F , where
the vector xv corresponds to the ego-feature of node v, and {xu : u ∈ N̄(v)} to its neighbor-features.

We further assume a class label vector y, which for each node v contains a unique class label yv . The
goal of semi-supervised node classification is to learn a mapping ` : V → Y , where Y is the set of
labels, given a set of labeled nodes TV = {(v1, y1), (v2, y2), ...} as training data.

Graph neural networks From a probabilistic perspective, most GNN models assume the following
local Markov property on node features: for each node v ∈ V , there exists a neighborhood N(v) such
that yv only depends on the ego-feature xv and neighbor-features {xu : u ∈ N(v)}. Most models
derive the class label yv via the following representation learning approach:

r(k)
v = f

(
r(k−1)
v , {r(k−1)

u : u ∈ N(v)}
)
, r(0)

v = xv, and yv = arg max{softmax(r(K)
v )W}, (1)

where the embedding function f is applied repeatedly in K total rounds, node v’s representation
(or hidden state vector) at round k, r(k)

v , is learned from its ego- and neighbor-representations in
the previous round, and a softmax classifier with learnable weight matrix W is applied to the final
representation of v. Most existing models differ in their definitions of neighborhoods N(v) and
embedding function f . A typical definition of neighborhood is N1(v)—i.e., the 1-hop neighbors of v.
As for f , in graph convolutional networks (GCN) [17] each node repeatedly averages its own features
and those of its neighbors to update its own feature representation. Using an attention mechanism,
GAT [36] models the influence of different neighbors more precisely as a weighted average of the
ego- and neighbor-features. GraphSAGE [11] generalizes the aggregation beyond averaging, and
models the ego-features distinctly from the neighbor-features in its subsampled neighborhood.

Homophily and heterophily In this work, we focus on heterophily in class labels. We first define
the edge homophily ratio h as a measure of the graph homophily level, and use it to define graphs
with strong homophily/heterophily:

Definition 1 The edge homophily ratio h = |{(u,v):(u,v)∈E∧yu=yv}|
|E| is the fraction of edges in a

graph which connect nodes that have the same class label (i.e., intra-class edges).

Definition 2 Graphs with strong homophily have high edge homophily ratio h→ 1, while graphs
with strong heterophily (i.e., low/weak homophily) have small edge homophily ratio h→ 0.

2
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The edge homophily ratio in Dfn. 1 gives an overall trend for all the edges in the graph. The actual
level of homophily may vary within different pairs of node classes, i.e., there is different tendency of
connection between each pair of classes. In App. B, we give more details about capturing these more
complex network characteristics via an empirical class compatibility matrix H, whose i, j-th entry is
the fraction of outgoing edges to nodes in class j among all outgoing edges from nodes in class i.

Heterophily 6= Heterogeneity. We remark that heterophily, which we study in this work, is a distinct
network concept from heterogeneity. Formally, a network is heterogeneous [34] if it has at least two
types of nodes and different relationships between them (e.g., knowledge graphs), and homogeneous
if it has a single type of nodes (e.g., users) and a single type of edges (e.g., friendship). The type
of nodes in heterogeneous graphs does not necessarily match the class labels yv, therefore both
homogeneous and heterogeneous networks may have different levels of homophily.

3 Learning Over Networks with Heterophily

Table 1: Example of a heterophily setting
(h = 0.1) where existing GNNs fail to
generalize, and a typical homophily setting
(h = 0.7): mean accuracy and standard
deviation over three runs (cf. App. G).

h = 0.1 h = 0.7

GCN [17] 37.14±4.60 84.52±0.54

GAT [36] 33.11±1.20 84.03±0.97

GCN-Cheby [7] 68.10±1.75 84.92±1.03

GraphSAGE [11] 72.89±2.42 85.06±0.51

MixHop [1] 58.93±2.84 84.43±0.94

MLP 74.85±0.76 71.72±0.62

H2GCN (ours) 76.87±0.43 88.28±0.66

While many GNN models have been proposed, most of
them are designed under the assumption of homophily,
and are not capable of handling heterophily. As a moti-
vating example, Table 1 shows the mean classification
accuracy for several leading GNN models on our syn-
thetic benchmark syn-cora, where we can control the
homophily/heterophily level (see App. G for details on
the data and setup). Here we consider two homophily
ratios, h = 0.1 and h = 0.7, one for high heterophily
and one for high homophily. We observe that for het-
erophily (h = 0.1) all existing methods fail to perform
better than a Multilayer Perceptron (MLP) with 1 hidden
layer, a graph-agnostic baseline that relies solely on the
node features for classification (differences in accuracy
of MLP for different h are due to randomness). Especially, GCN [17] and GAT [36] show up to
42% worse performance than MLP, highlighting that methods that work well under high homophily
(h = 0.7) may not be appropriate for networks with low/medium homophily.

Motivated by this limitation, in the following subsections, we discuss and theoretically justify a set
of key design choices that, when appropriately incorporated in a GNN framework, can improve the
performance in the challenging heterophily settings. Then, we present H2GCN, a model that, thanks
to these designs, adapts well to both homophily and heterophily (Table 1, last row). In Section 5, we
provide a comprehensive empirical analysis on both synthetic and real data with varying homophily
levels, and show that the identified designs significantly improve the performance of GNNs (not
limited to H2GCN) by effectively leveraging the graph structure in challenging heterophily settings,
while maintaining competitive performance in homophily.

3.1 Effective Designs for Networks with Heterophily

We have identified three key designs that—when appropriately integrated—can help improve the
performance of GNN models in heterophily settings: (D1) ego- and neighbor-embedding separation;
(D2) higher-order neighborhoods; and (D3) combination of intermediate representations. While these
designs have been utilized separately in some prior works [11, 7, 1, 38], we are the first to discuss
their importance under heterophily by providing novel theoretical justifications and an extensive
empirical analysis on a variety of datasets.

3.1.1 (D1) Ego- and Neighbor-embedding Separation

The first design entails encoding each ego-embedding (i.e., a node’s embedding) separately from the
aggregated embeddings of its neighbors, since they are likely to be dissimilar in heterophily settings.
Formally, the representation (or hidden state vector) learned for each node v at round k is given as:

r(k)
v = COMBINE

(
r(k−1)
v , AGGR({r(k−1)

u : u ∈ N̄(v) })
)
, (2)

the neighborhood N̄(v) does not include v (no self-loops), the AGGR function aggregates representa-
tions only from the neighbors (in some way—e.g., average), and AGGR and COMBINE may be followed
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by a non-linear transformation. For heterophily, after aggregating the neighbors’ representations, the
definition of COMBINE (akin to ‘skip connection’ between layers) is critical: a simple way to combine
the ego- and the aggregated neighbor-embeddings without ‘mixing’ them is with concatenation as in
GraphSAGE [11]—rather than averaging all of them as in the GCN model by Kipf and Welling [17].

Intuition. In heterophily settings, by definition (Dfn. 2), the class label yv and original features xv
of a node and those of its neighboring nodes {(yu,xu) : u ∈ N̄(v)} (esp. the direct neighbors
N̄1(v)) may be different. However, the typical GCN design that mixes the embeddings through an
average [17] or weighted average [36] as the COMBINE function results in final embeddings that are
similar across neighboring nodes (especially within a community or cluster) for any set of original
features [28]. While this may work well in the case of homophily, where neighbors likely belong to
the same cluster and class, it poses severe challenges in the case of heterophily: it is not possible to
distinguish neighbors from different classes based on the (similar) learned representations. Choosing
a COMBINE function that separates the representations of each node v and its neighbors N̄(v) allows
for more expressiveness, where the skipped or non-aggregated representations can evolve separately
over multiple rounds of propagation without becoming prohibitively similar.

Theoretical Justification. We prove theoretically that, under some conditions, a GCN layer that
co-embeds ego- and neighbor-features is less capable of generalizing to heterophily than a layer that
embeds them separately. We measure its generalization ability by its robustness to test/train data
deviations. We give the proof of the theorem in App. C.1. Though the theorem applies to specific
conditions, our empirical analysis shows that it holds in more general cases (§ 5).

Theorem 1 Consider a graph G without self-loops (§ 2) with node features xv = onehot(yv) for
each node v, and an equal number of nodes per class y ∈ Y in the training set TV . Also assume that
all nodes in TV have degree d, and proportion h of their neighbors belong to the same class, while
proportion 1−h

|Y|−1 of them belong to any other class (uniformly). Then for h < 1−|Y|+2d
2|Y|d , a simple

GCN layer formulated as (A + I)XW is less robust, i.e., misclassifies a node for smaller train/test
data deviations, than a AXW layer that separates the ego- and neighbor-embeddings.

Observations. In Table 1, we observe that GCN, GAT, and MixHop, which ‘mix’ the ego- and
neighbor-embeddings explicitly1, perform poorly in the heterophily setting. On the other hand,
GraphSAGE that separates the embeddings (e.g., it concatenates the two embeddings and then applies
a non-linear transformation) achieves 33-40% better performance in this setting.

3.1.2 (D2) Higher-order Neighborhoods

The second design involves explicitly aggregating information from higher-order neighborhoods in
each round k, beyond the immediate neighbors of each node:

r(k)
v = COMBINE

(
r(k−1)
v , AGGR({r(k−1)

u : u ∈ N1(v) }), AGGR({r(k−1)
u : u ∈ N2(v) }), . . .

)
(3)

where Ni(v) denotes the neighbors of v at exactly i hops away, and the AGGR functions applied to
different neighborhoods can be the same or different. This design—employed in GCN-Cheby [7] and
MixHop [1]—augments the implicit aggregation over higher-order neighborhoods that most GNN
models achieve through multiple rounds of first-order propagation based on variants of Eq. (2).

Intuition. To show why higher-order neighborhoods help in the heterophily settings, we first define
homophily-dominant and heterophily-dominant neighborhoods:

Definition 3 N(v) is expectedly homophily-dominant if P (yu = yv|yv) ≥ P (yu = y|yv),∀u ∈
N(v) and y ∈ Y 6= yv . If the opposite inequality holds, N(v) is expectedly heterophily-dominant.

From this definition, we can see that expectedly homophily-dominant neighborhoods are more
beneficial for GNN layers, as in such neighborhoods the class label yv of each node v can in
expectation be determined by the majority of the class labels in N(v). In the case of heterophily, we
have seen empirically that although the immediate neighborhoods may be heterophily-dominant, the
higher-order neighborhoods may be homophily-dominant and thus provide more relevant context.
This observation is also confirmed by recent works [2, 6] in the context of binary attribute prediction.

1 These models consider self-loops, which turn each ego also into a neighbor, and thus mix the ego- and
neighbor-representations. E.g., GCN and MixHop operate on the symmetric normalized adjacency matrix
augmented with self-loops: Â = D̂−

1
2 (A+ I)D̂−

1
2 , where I is the identity and D̂ the degree matrix of A+ I.
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Theoretical Justification. Below we formalize the above observation for 2-hop neighborhoods under
non-binary attributes (labels), and prove one case when they are homophily-dominant in App. C.2:

Theorem 2 Consider a graph G without self-loops (§ 2) with label set Y , where for each node v,
its neighbors’ class labels {yu : u ∈ N(v)} are conditionally independent given yv, and P (yu =
yv|yv) = h, P (yu = y|yv) = 1−h

|Y|−1 ,∀y 6= yv. Then, the 2-hop neighborhood N2(v) for a node v
will always be homophily-dominant in expectation.

Observations. Under heterophily (h = 0.1), GCN-Cheby, which models different neighborhoods by
combining Chebyshev polynomials to approximate a higher-order graph convolution operation [7],
outperforms GCN and GAT, which aggregate over only the immediate neighbors N1, by up to +31%
(Table 1). MixHop, which explicitly models 1-hop and 2-hop neighborhoods (though ‘mixes’ the
ego- and neighbor-embeddings1, violating design D1), also outperforms these two models.

3.1.3 (D3) Combination of Intermediate Representations

The third design combines the intermediate representations of each node at the final layer:
r(final)
v = COMBINE

(
r(1)
v , r(2)

v , . . . , r(K)
v

)
(4)

to explicitly capture local and global information via COMBINE functions that leverage each represen-
tation separately–e.g., concatenation, LSTM-attention [38]. This design is introduced in jumping
knowledge networks [38] and shown to increase the representation power of GCNs under homophily.

Intuition. Intuitively, each round collects information with different locality—earlier rounds are more
local, while later rounds capture increasingly more global information (implicitly, via propagation).
Similar to D2 (which models explicit neighborhoods), this design models the distribution of neighbor
representations in low-homophily networks more accurately. It also allows the class prediction to
leverage different neighborhood ranges in different networks, adapting to their structural properties.

Theoretical Justification. The benefit of combining intermediate representations can be theoretically
explained from the spectral perspective. Assuming a GCN-style layer—where propagation can be
viewed as spectral filtering—, the higher order polynomials of the normalized adjacency matrix
A is a low-pass filter [37], so intermediate outputs from earlier rounds contain higher-frequency
components than outputs from later rounds. At the same time, the following theorem holds for graphs
with heterophily, where we view class labels as graph signals (as in graph signal processing):

Theorem 3 Consider graph signals (label vectors) s, t ∈ {0, 1}|V| defined on an undirected graph
G with edge homophily ratios hs and ht, respectively. If hs < ht, then signal s has higher energy
(Dfn. 5) in high-frequency components than t in the spectrum of unnormalized graph Laplacian L.
In other words, in heterophily settings, the label distribution contains more information at higher than
lower frequencies (see proof in App. C.3). Thus, by combining the intermediate outputs from different
layers, this design captures both low- and high-frequency components in the final representation,
which is critical in heterophily settings, and allows for more expressiveness in the general setting.

Observations. By concatenating the intermediate representations from two rounds with the embedded
ego-representation (following the jumping knowledge framework [38]), GCN’s accuracy increases to
58.93%±3.17 for h = 0.1, a 20% improvement over its counterpart without design D3 (Table 1).

Summary of designs To sum up, D1 models (at each layer) the ego- and neighbor-representations
distinctly, D2 leverages (at each layer) representations of neighbors at different distances distinctly,
and D3 leverages (at the final layer) the learned ego-representations at previous layers distinctly.

3.2 H2GCN: A Framework for Networks with Homophily or Heterophily

We now describe H2GCN, which exemplifies how effectively combining designs D1-D3 can help
better adapt to the whole spectrum of low-to-high homophily, while avoiding interference with other
designs. It has three stages (Alg. 1, App. D): (S1) feature embedding, (S2) neighborhood aggregation,
and (S3) classification.

The feature embedding stage (S1) uses a graph-agnostic dense layer to generate for each node v the
feature embedding r

(0)
v ∈ Rp based on its ego-feature xv: r(0)

v = σ(xvWe), where σ is an optional
non-linear function, and We ∈ RF×p is a learnable weight matrix.
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In the neighborhood aggregation stage (S2), the generated embeddings are aggregated and repeatedly
updated within the node’s neighborhood for K rounds. Following designs D1 and D2, the neighbor-
hood N(v) of our framework involves two sub-neighborhoods without the egos: the 1-hop graph
neighbors N̄1(v) and the 2-hop neighbors N̄2(v), as shown in Fig. 1:

r(k)
v = COMBINE

(
AGGR{r(k−1)

u : u ∈ N̄1(v)}, AGGR{r(k−1)
u : u ∈ N̄2(v)}

)
. (5)

We set COMBINE as concatenation (as to not mix different neighborhood ranges), and AGGR as a
degree-normalized average of the neighbor-embeddings in sub-neighborhood N̄i(v):

r(k)
v =

(
r

(k)
v,1‖r

(k)
v,2

)
and r

(k)
v,i = AGGR{r(k−1)

u : u ∈ N̄i(v)} =
∑

u∈N̄i(v) r
(k−1)
u d

−1/2
v,i d

−1/2
u,i , (6)

where dv,i = |N̄i(v)| is the i-hop degree of node v (i.e., number of nodes in its i-hop neighborhood).
Unlike Eq. (2), here we do not combine the ego-embedding of node v with the neighbor-embeddings.
We found that removing the usual nonlinear transformations per round, as in SGC [37], works better
(App. D.2), in which case we only need to include the ego-embedding in the final representation. By
design D3, each node’s final representation combines all its intermediate representations:

r(final)
v = COMBINE

(
r(0)
v , r(1)

v , . . . , r(K)
v

)
, (7)

where we empirically find concatenation works better than max-pooling [38] as the COMBINE function.

In the classification stage (S3), the node is classified based on its final embedding r
(final)
v :

yv = arg max{softmax(r(final)
v Wc)}, (8)

where Wc ∈ R(2K+1−1)p×|Y| is a learnable weight matrix. We visualize our framework in App. D.

Time complexity The feature embedding stage (S1) takes O(nnz(X) p), where nnz(X) is the
number of non-0s in feature matrix X ∈ Rn×F , and p is the dimension of the feature embeddings. The
neighborhood aggregation stage (S2) takes O (|E|dmax) to derive the 2-hop neighborhoods via sparse-
matrix multiplications, where dmax is the maximum degree of all nodes, and O

(
2K(|E|+ |E2|)p

)
for K rounds of aggregation, where |E2| = 1

2

∑
v∈V |N̄2(v)|. We give a detailed analysis in App. D.

4 Other Related Work

We discuss relevant work on GNNs here, and give other related work (e.g., classification under
heterophily) in Appendix E. Besides the models mentioned above, there are various comprehensive
reviews describing previously proposed architectures [42, 5, 41]. Recent work has investigated GNN’s
ability to capture graph information, proposing diagnostic measurements based on feature smoothness
and label smoothness [12] that may guide the learning process. To capture more graph information,
other works generalize graph convolution outside of immediate neighborhoods. For example, apart
from MixHop [1] (cf. § 3.1), Graph Diffusion Convolution [18] replaces the adjacency matrix with a
sparsified version of a diffusion matrix (e.g., heat kernel or PageRank). Geom-GCN [26] precomputes
unsupervised node embeddings and uses neighborhoods defined by geometric relationships in the
resulting latent space to define graph convolution. Some of these works [1, 26, 12] acknowledge the
challenges of learning from graphs with heterophily. Others have noted that node labels may have
complex relationships that should be modeled directly. For instance, Graph Agreement Models [33]
augment the classification task with an agreement task, co-training a model to predict whether pairs
of nodes share the same label; Graph Markov Neural Networks [27] model the joint label distribution
with a conditional random field, trained with expectation maximization using GNNs; Correlated
Graph Neural Networks [15] model the correlation structure in the residuals of a regression task with
a multivariate Gaussian, and can learn negative label correlations for neighbors in heterophily (for
binary class labels); and the recent CPGNN [43] method models more complex label correlations by
integrating the compatibility matrix notion from belief propagation [10] into GNNs.

Table 2: Design Comparison.
Method D1 D2 D3

GCN [17] 7 7 7
GAT [36] 7 7 7
GCN-Cheby [7] 7 3 7
GraphSAGE [11] 3 7 7
MixHop [1] 7 3 7

H2GCN (proposed) 3 3 3

Comparison of H2GCN to existing GNN models As shown
in Table 2, H2GCN differs from existing GNN models with
respect to designs D1-D3, and their implementations (we give
more details in App. D). Notably, H2GCN learns a graph-
agnostic feature embedding in stage (S1), and skips the non-
linear embeddings of aggregated representations per round that
other models use (e.g., GraphSAGE, MixHop, GCN), resulting
in a simpler yet powerful architecture.
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Table 3: Statistics for Synthetic Datasets
Benchmark Name #Nodes |V| #Edges |E| #Classes |Y| #Features F Homophily h #Graphs

syn-cora 1, 490 2, 965 to 2, 968 5 cora [30, 39] [0, 0.1, . . . , 1] 33 (3 per h)
syn-products 10, 000 59, 640 to 59, 648 10 ogbn-products [13] [0, 0.1, . . . , 1] 33 (3 per h)

5 Empirical Evaluation

We show the significance of designs D1-D3 on synthetic and real graphs with low-to-high homophily
(Tab. 3, 5) via an ablation study of H2GCN and comparison of models with and without the designs.

Baseline models We consider MLP with 1 hidden layer, and all the methods listed in Table 2.
For H2GCN, we model the first- and second-order neighborhoods (N̄1 and N̄2), and consider two
variants: H2GCN-1 uses one embedding round (K = 1) and H2GCN-2 uses two rounds (K = 2).
We tune all the models on the same train/validation splits (see App. F for details).

5.1 Evaluation on Synthetic Benchmarks

0 0.2 0.4 0.6 0.8 1

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H2GCN-2
H2GCN-1

GCN-Cheby
GraphSAGE
MixHop
GCN
GAT
MLP

h

Te
st

 A
cc

ur
ac

y

(a) syn-cora (Table G.2)
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(b) syn-products (Table G.3). Mix-
Hop acc < 30%; GAT acc < 50% for
h < 0.4.

Figure 2: Performance of GNN mod-
els on synthetic datasets. H2GCN-
2 outperforms baseline models in
most heterophily settings, while ty-
ing with other models in homophily.

Synthetic datasets & setup We generate synthetic graphs
with various homophily ratios h (Tab. 3) by adopting an ap-
proach similar to [16]. In App. G, we describe the data gener-
ation process, the experimental setup, and the data statistics in
detail. All methods share the same training, validation and test
splits (25%, 25%, 50% per class), and we report the average
accuracy and standard deviation (stdev) over three generated
graphs per heterophily level and benchmark dataset.

Model comparison Figure 2 shows the mean test accuracy
(and stdev) over all random splits of our synthetic benchmarks.
We observe similar trends on both benchmarks: H2GCN has
the best trend overall, outperforming the baseline models in
most heterophily settings, while tying with other models in
homophily. The performance of GCN, GAT and MixHop,
which mix the ego- and neighbor-embeddings, increases with
respect to the homophily level. But, while they achieve near-
perfect accuracy under strong homophily (h → 1), they are
significantly less accurate than MLP (near-flat performance
curve as it is graph-agnostic) for many heterophily settings.
GraphSAGE and GCN-Cheby, which leverage some of the
identified designs D1-D3 (Table 2, § 3), are more competitive
in such settings. We note that all the methods—except GCN
and GAT—learn more effectively under perfect heterophily
(h=0) than weaker settings (e.g., h ∈ [0.1, 0.3]), as evidenced
by the J-shaped performance curves in low-homophily ranges.

Significance of design choices Using syn-products, we show the significance of designs D1-D3
(§ 3.1) through ablation studies with variants of H2GCN (Fig. 3, Table G.4).

(D1) Ego- and Neighbor-embedding Separation. We consider H2GCN-1 variants that separate
the ego- and neighbor-embeddings and model: (S0) neighborhoods N̄1 and N̄2 (i.e., H2GCN-1);
(S1) only the 1-hop neighborhood N̄1 in Eq. (5); and their counterparts that do not separate the
two embeddings and use: (NS0) neighborhoods N1 and N2 (including v); and (NS1) only the 1-
hop neighborhood N1. Figure 3a shows that the variants that learn separate embedding functions
significantly outperform the others (NS0/1) in heterophily settings (h < 0.7) by up to 40%, which
shows that design D1 is critical for success in heterophily. H2GCN-1 (S0) performs best in homophily.

(D2) Higher-order Neighborhoods. For this design, we consider three variants of H2GCN-1 without
specific neighborhoods: (N0) without the 0-hop neighborhood N0(v) = v (i.e, the ego-embedding)
(N1) without N̄1(v); and (N2) without N̄2(v). Figure 3b shows that H2GCN-1 consistently performs
better than all the variants, indicating that combining all sub-neighborhoods works best. Among the
variants, in heterophily settings, N0(v) contributes most to the performance (N0 causes significant
decrease in accuracy), followed by N̄1(v), and N̄2(v). However, when h ≥ 0.7, the importance of
sub-neighborhoods is reversed. Thus, the ego-features are the most important in heterophily, and
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Figure 3: (a)-(c): Significance of design choices D1-D3 via ablation studies. (d): Performance of
H2GCN for different node degree ranges. In heterophily, the performance gap between low- and
high-degree nodes is significantly larger than in homophily, i.e., low-degree nodes pose challenges.

higher-order neighborhoods contribute the most in homophily. The design of H2GCN allows it to
effectively combine information from different neighborhoods, adapting to all levels of homophily.

(D3) Combination of Intermediate Representations. We consider three variants (K-0,1,2) of H2GCN-2
that drop from the final representation of Eq. (7) the 0th, 1st or 2nd-round intermediate representation,
respectively. We also consider only the 2nd intermediate representation as final, which is akin to what
the other GNN models do. Figure 3c shows that H2GCN-2, which combines all the intermediate
representations, performs the best, followed by the variant K2 that skips the round-2 representation.
The ego-embedding is the most important for heterophily h ≤ 0.5 (see trend of K0).

The challenging case of low-degree nodes Figure 3d plots the mean accuracy of H2GCN variants
on syn-products for different node degree ranges both in a heterophily and a homophily setting
(h ∈ {0.2, 0.8}). We observe that under heterophily there is a significantly bigger performance gap
between low- and high-degree nodes: 13% for H2GCN-1 (10% for H2GCN-2) vs. less than 3%
under homophily. This is likely due to the importance of the distribution of class labels in each
neighborhood under heterophily, which is harder to estimate accurately for low-degree nodes with
few neighbors. On the other hand, in homophily, neighbors are likely to have similar classes y ∈ Y ,
so the neighborhood size does not have as significant impact on the accuracy.

5.2 Evaluation on Real Benchmarks Table 4: Real benchmarks: Average rank per
method (and their employed designs among
D1-D3) under heterophily (benchmarks with
h ≤ 0.3), homophily (h ≥ 0.7), and across
the full spectrum (“Overall”). The “*” de-
notes ranks based on results reported in [26].

Method (Designs) Het. Hom. Overall

H2GCN-1 (D1, D2, D3) 3.8 3.0 3.6
H2GCN-2 (D1, D2, D3) 4.0 2.0 3.3
GraphSAGE (D1) 5.0 6.0 5.3
GCN-Cheby (D2) 7.0 6.3 6.8
MixHop (D2) 6.5 6.0 6.3

GraphSAGE+JK (D1, D3) 5.0 7.0 5.7
GCN-Cheby+JK (D2, D3) 3.7 7.7 5.0
GCN+JK (D3) 7.2 8.7 7.7

GCN 9.8 5.3 8.3
GAT 11.5 10.7 11.2
GEOM-GCN* 8.2 4.0 6.8

MLP 6.2 11.3 7.9

Real datasets & setup We now evaluate the perfor-
mance of our model and existing GNNs on a variety
of real-world datasets [35, 29, 30, 22, 4, 31] with edge
homophily ratio h ranging from strong heterophily
to strong homophily, going beyond the traditional
Cora, Pubmed and Citeseer graphs that have strong
homophily (hence the good performance of existing
GNNs on them). We summarize the data in Table 5,
and describe them in App. H, where we also point
out potential data limitations. For all benchmarks (ex-
cept Cora-Full), we use the feature vectors, class
labels, and 10 random splits (48%/32%/20% of nodes
per class for train/validation/test2) provided by [26].
For Cora-Full, we generate 3 random splits, with
25%/25%/50% of nodes per class for train/valida-
tion/test.

Effectiveness of design choices Table 4 gives the
average ranks of our H2GCN variants and other models on real benchmarks with heterophily,
homophily, and across the full spectrum. Table 5 gives detailed results (mean accuracy and stdev)
per benchmark. We observe that models which utilize all or subsets of our identified designs D1-D3
(§ 3.1) perform significantly better than GCN and GAT which lack these designs, especially in
heterophily. Next, we discuss the effectiveness of each design.

(D1) Ego- and Neighbor-embedding Separation. We compare GraphSAGE, which separates the
ego- and neighbor-embeddings, and GCN that does not. In heterophily settings, GraphSAGE has

2[26] claims that the ratios are 60%/20%/20%, which is different from the actual data splits shared on GitHub.
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Table 5: Real data: mean accuracy ± stdev over different data splits. Best model per benchmark
highlighted in gray. The “*” results are obtained from [26] and “N/A” denotes non-reported results.

Texas Wisconsin Actor Squirrel Chameleon Cornell Cora Full Citeseer Pubmed Cora
Hom. ratio h 0.11 0.21 0.22 0.22 0.23 0.3 0.57 0.74 0.8 0.81
#Nodes |V| 183 251 7,600 5,201 2,277 183 19,793 3,327 19,717 2,708
#Edges |E| 295 466 26,752 198,493 31,421 280 63,421 4,676 44,327 5,278
#Classes |Y| 5 5 5 5 5 5 70 7 3 6

H2GCN-1 84.86±6.77 86.67±4.69 35.86±1.03 36.42±1.89 57.11±1.58 82.16±4.80 68.13±0.49 77.07±1.64 89.40±0.34 86.92±1.37

H2GCN-2 82.16±5.28 85.88±4.22 35.62±1.30 37.90±2.02 59.39±1.98 82.16±6.00 69.05±0.37 76.88±1.77 89.59±0.33 87.81±1.35

GraphSAGE 82.43±6.14 81.18±5.56 34.23±0.99 41.61±0.74 58.73±1.68 75.95±5.01 65.14±0.75 76.04±1.30 88.45±0.50 86.90±1.04

GCN-Cheby 77.30±4.07 79.41±4.46 34.11±1.09 43.86±1.64 55.24±2.76 74.32±7.46 67.41±0.69 75.82±1.53 88.72±0.55 86.76±0.95

MixHop 77.84±7.73 75.88±4.90 32.22±2.34 43.80±1.48 60.50±2.53 73.51±6.34 65.59±0.34 76.26±1.33 85.31±0.61 87.61±0.85

GraphSAGE+JK 83.78±2.21 81.96±4.96 34.28±1.01 40.85±1.29 58.11±1.97 75.68±4.03 65.31±0.58 76.05±1.37 88.34±0.62 85.96±0.83

Cheby+JK 78.38±6.37 82.55±4.57 35.14±1.37 45.03±1.73 63.79±2.27 74.59±7.87 66.87±0.29 74.98±1.18 89.07±0.30 85.49±1.27

GCN+JK 66.49±6.64 74.31±6.43 34.18±0.85 40.45±1.61 63.42±2.00 64.59±8.68 66.72±0.61 74.51±1.75 88.41±0.45 85.79±0.92

GCN 59.46±5.25 59.80±6.99 30.26±0.79 36.89±1.34 59.82±2.58 57.03±4.67 68.39±0.32 76.68±1.64 87.38±0.66 87.28±1.26

GAT 58.38±4.45 55.29±8.71 26.28±1.73 30.62±2.11 54.69±1.95 58.92±3.32 59.81±0.92 75.46±1.72 84.68±0.44 82.68±1.80

GEOM-GCN* 67.57 64.12 31.63 38.14 60.90 60.81 N/A 77.99 90.05 85.27

MLP 81.89±4.78 85.29±3.61 35.76±0.98 29.68±1.81 46.36±2.52 81.08±6.37 58.76±0.50 72.41±2.18 86.65±0.35 74.75±2.22

an average rank of 5.0 compared to 9.8 for GCN, and outperforms GCN in almost all heterophily
benchmarks by up to 23%. In homophily settings (h ≥ 0.7), GraphSAGE ranks close to GCN (6.0 vs.
5.3), and GCN never outperforms GraphSAGE by more than 1% in mean accuracy. These results
support the importance of D1 for success in heterophily and comparable performance in homophily.

(D2) Higher-order Neighborhoods. To show the benefits of design D2 under heterophily, we compare
the performance of GCN-Cheby and MixHop—which define higher-order graph convolutions—to that
of (first-order) GCN. Under heterophily, GCN-Cheby (rank 7.0) and MixHop (rank 6.5) have better
performance than GCN (rank 9.8), and outperform the latter in all but one heterophily benchmarks by
up to 20%. In most homophily benchmarks, the performance difference between these methods is
less than 1%. Our observations highlight the importance of D2, especially in heterophily.

(D3) Combination of Intermediate Representations. We compare GraphSAGE, GCN-Cheby and
GCN to their corresponding variants enhanced with JK connections [38]. GCN and GCN-Cheby
benefit significantly from D3 in heterophily: their average ranks improve (9.8 vs. 7.2 and 7 vs 3.7,
respectively) and their mean accuracies increase by up to 14% and 8%, respectively, in heterophily
benchmarks. Though GraphSAGE+JK performs better than GraphSAGE on half of the heterophily
benchmarks, its average rank remains unchanged. This may be due to the marginal benefit of D3
when combined with D1, which GraphSAGE employs. Under homophily, the performance with and
without JK connections is similar (gaps mostly less than 2%), matching the observations in [38].

While other design choices and implementation details may confound a comparative evaluation of
D1-D3 in different models (motivating our introduction of H2GCN and our ablation study in § 3.1),
these observations support the effectiveness of our identified designs on diverse GNN architectures
and real-world datasets, and affirm our findings in the ablation study. We also observe that our
H2GCN variants, which combine the three identified designs, have consistently strong performance
across the full spectrum of low-to-high homophily: H2GCN-2 achieves the best average rank (3.3)
across all datasets (or homophily ratios h), followed by H2GCN-1 (3.6).

Additional model comparison In Table 4, we also report the best results among the three recently-
proposed GEOM-GCN variants (§ 4), directly from the paper [26]: other models (including ours)
outperform this method significantly under heterophily. We note that MLP is a competitive baseline
under heterophily (ranked 6.2), indicating that many existing models do not use the graph information
effectively, or the latter is misleading in such cases. All models perform poorly on Squirrel and
Actor likely due to their low-quality node features (small correlation with class labels). Also,
Squirrel and Chameleon are dense, with many nodes sharing the same neighbors.

6 Conclusion
We have focused on characterizing the representation power of GNNs in challenging settings with
heterophily or low homophily, which is understudied in the literature. We have highlighted the current
limitations of GNNs, presented designs that increase representation power under heterophily and
are theoretically justified with perturbation analysis and graph signal processing, and introduced
the H2GCN model that adapts to both heterophily and homophily by effectively synthetizing these
designs. We analyzed various challenging datasets, going beyond the often-used benchmark datasets
(Cora, Pubmed, Citeseer), and leave as future work extending to a larger-scale experimental testbed.
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Broader Impact

Homophily and heterophily are not intrinsically ethical or unethical—they are both phenomena
existing in the nature, resulting in the popular proverbs “birds of a feather flock together” and
“opposites attract”. However, many popular GNN models implicitly assume homophily; as a result,
if they are applied to networks that do not satisfy the assumption, the results may be biased, unfair,
or erroneous. In some applications, the homophily assumption may have ethical implications.
For example, a GNN model that intrinsically assumes homophily may contribute to the so-called
“filter bubble” phenomenon in a recommendation system (reinforcing existing beliefs/views, and
downplaying the opposite ones), or make minority groups less visible in social networks. In other
cases, a reliance on homophily may hinder scientific progress. Among other domains, this is critical
for applying GNN models to molecular and protein structures, where the connected nodes often
belong to different classes, and thus successful methods will need to model heterophily successfully.

Our work has the potential to rectify some of these potential negative consequences of existing GNN
work. While our methodology does not change the amount of homophily in a network, moving
beyond a reliance on homophily can be a key to improve the fairness, diversity and performance
in applications using GNNs. We hope that this paper will raise more awareness and discussions
regarding the homophily limitations of existing GNN models, and help researchers design models
which have the power of learning in both homophily and heterophily settings.

Acknowledgments and Disclosure of Funding

We thank the reviewers for their constructive feedback. This material is based upon work supported
by the National Science Foundation under CAREER Grant No. IIS 1845491 and 1452425, Army
Young Investigator Award No. W911NF1810397, an Adobe Digital Experience research faculty
award, an Amazon faculty award, a Google faculty award, and AWS Cloud Credits for Research. We
gratefully acknowledge the support of NVIDIA Corporation with the donation of the Quadro P6000
GPU used for this research. Any opinions, findings, and conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily reflect the views of the National
Science Foundation or other funding parties.

References
[1] Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Hrayr Harutyunyan, Nazanin Alipourfard, Kristina Ler-

man, Greg Ver Steeg, and Aram Galstyan. 2019. MixHop: Higher-Order Graph Convolution Architectures
via Sparsified Neighborhood Mixing. In International Conference on Machine Learning (ICML).

[2] Kristen M Altenburger and Johan Ugander. 2018. Monophily in social networks introduces similarity
among friends-of-friends. Nature human behaviour 2, 4 (2018), 284–290.

[3] A. L. Barabasi and R. Albert. 1999. Emergence of scaling in random networks. Science 286, 5439 (October
1999), 509–512. http://view.ncbi.nlm.nih.gov/pubmed/10521342

[4] Aleksandar Bojchevski and Stephan Günnemann. 2018. Deep Gaussian Embedding of Graphs: Unsuper-
vised Inductive Learning via Ranking. In International Conference on Learning Representations (ICLR).
https://openreview.net/forum?id=r1ZdKJ-0W

[5] Ines Chami, Sami Abu-El-Haija, Bryan Perozzi, Christopher Ré, and Kevin Murphy. 2020. Machine
Learning on Graphs: A Model and Comprehensive Taxonomy. arXiv preprint arXiv:2005.03675 (2020).

[6] Alex Chin, Yatong Chen, Kristen M. Altenburger, and Johan Ugander. 2019. Decoupled smoothing on
graphs. In Proceedings of the 2019 World Wide Web Conference. 263–272.

[7] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolutional neural networks
on graphs with fast localized spectral filtering. In Advances in Neural Information Processing Systems
(NeurIPS). 3844–3852.

[8] Dhivya Eswaran, Stephan Günnemann, Christos Faloutsos, Disha Makhija, and Mohit Kumar. 2017.
Zoobp: Belief propagation for heterogeneous networks. Proceedings of the VLDB Endowment 10, 5 (2017),
625–636.

[9] Wolfgang Gatterbauer. 2014. Semi-supervised learning with heterophily. arXiv preprint arXiv:1412.3100
(2014).

10

http://view.ncbi.nlm.nih.gov/pubmed/10521342
https://openreview.net/forum?id=r1ZdKJ-0W


[10] Wolfgang Gatterbauer, Stephan Günnemann, Danai Koutra, and Christos Faloutsos. 2015. Linearized and
Single-Pass Belief Propagation. Proceedings of the VLDB Endowment 8, 5 (2015).

[11] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation learning on large graphs.
In Advances in neural information processing systems (NeurIPS). 1024–1034.

[12] Yifan Hou, Jian Zhang, James Cheng, Kaili Ma, Richard T. B. Ma, Hongzhi Chen, and Ming-Chang Yang.
2020. Measuring and Improving the Use of Graph Information in Graph Neural Networks. In International
Conference on Learning Representations (ICLR).

[13] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta, and
Jure Leskovec. 2020. Open Graph Benchmark: Datasets for Machine Learning on Graphs. arXiv preprint
arXiv:2005.00687 (2020).

[14] D. Jensen J. Neville. 2000. Iterative classification in relational data, In In Proc. AAAI. Workshop on
Learning Statistical Models from Relational, 13–20.

[15] Junteng Jia and Austion R Benson. 2020. Residual Correlation in Graph Neural Network Regression. In
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.
588–598.

[16] Fariba Karimi, Mathieu Génois, Claudia Wagner, Philipp Singer, and Markus Strohmaier. 2017. Visibility
of minorities in social networks. arXiv preprint arXiv:1702.00150 (2017).

[17] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with Graph Convolutional
Networks. In International Conference on Learning Representations (ICLR).

[18] Johannes Klicpera, Stefan Weißenberger, and Stephan Günnemann. 2019. Diffusion Improves Graph
Learning. In Advances in Neural Information Processing Systems (NeurIPS).

[19] Danai Koutra, Tai-You Ke, U Kang, Duen Horng Chau, Hsing-Kuo Kenneth Pao, and Christos Faloutsos.
2011. Unifying Guilt-by-Association Approaches: Theorems and Fast Algorithms. In Proceedings of
the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in
Databases (ECML PKDD). 245–260.

[20] Qing Lu and Lise Getoor. 2003. Link-Based Classification. In Proceedings of the Twentieth International
Conference on International Conference on Machine Learning (ICML). AAAI Press, 496–503.

[21] Miller McPherson, Lynn Smith-Lovin, and James M Cook. 2001. Birds of a Feather: Homophily in Social
Networks. Annual Review of Sociology 27, 1 (2001), 415–444.

[22] Galileo Namata, Ben London, Lise Getoor, Bert Huang, and UMD EDU. 2012. Query-driven active
surveying for collective classification. In 10th International Workshop on Mining and Learning with
Graphs, Vol. 8.

[23] Mark Newman. 2018. Networks. Oxford university press.

[24] Shashank Pandit, Duen Horng Chau, Samuel Wang, and Christos Faloutsos. 2007. NetProbe: A Fast and
Scalable System for Fraud Detection in Online Auction Networks. In Proceedings of the 16th international
conference on World Wide Web. ACM, 201–210.

[25] Leto Peel. 2017. Graph-based semi-supervised learning for relational networks. In Proceedings of the 2017
SIAM International Conference on Data Mining. SIAM, 435–443.

[26] Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. 2020. Geom-GCN: Geometric
Graph Convolutional Networks. In International Conference on Learning Representations (ICLR). https:
//openreview.net/forum?id=S1e2agrFvS

[27] Meng Qu, Yoshua Bengio, and Jian Tang. 2019. GMNN: Graph Markov Neural Networks. In International
Conference on Machine Learning (ICML). 5241–5250.

[28] Ryan A. Rossi, Di Jin, Sungchul Kim, Nesreen Ahmed, Danai Koutra, and John Boaz Lee. 2020. On Prox-
imity and Structural Role-based Embeddings in Networks: Misconceptions, Techniques, and Applications.
ACM Transactions on Knowledge Discovery from Data (TKDD) (2020).

[29] Benedek Rozemberczki, Carl Allen, and Rik Sarkar. 2019. Multi-scale attributed node embedding. arXiv
preprint arXiv:1909.13021 (2019).

[30] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad. 2008.
Collective classification in network data. AI magazine 29, 3 (2008), 93–93.

11

https://openreview.net/forum?id=S1e2agrFvS
https://openreview.net/forum?id=S1e2agrFvS


[31] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. 2018. Pitfalls
of Graph Neural Network Evaluation. Relational Representation Learning Workshop, NeurIPS 2018
(2018).

[32] David I Shuman, Sunil K Narang, Pascal Frossard, Antonio Ortega, and Pierre Vandergheynst. 2013. The
emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and
other irregular domains. IEEE signal processing magazine 30, 3 (2013), 83–98.

[33] Otilia Stretcu, Krishnamurthy Viswanathan, Dana Movshovitz-Attias, Emmanouil Platanios, Sujith Ravi,
and Andrew Tomkins. 2019. Graph Agreement Models for Semi-Supervised Learning. In Advances in
Neural Information Processing Systems (NeurIPS). 8713–8723.

[34] Yizhou Sun and Jiawei Han. 2012. Mining Heterogeneous Information Networks: Principles and Method-
ologies. Morgan & Claypool Publishers.

[35] Jie Tang, Jimeng Sun, Chi Wang, and Zi Yang. 2009. Social influence analysis in large-scale networks. In
Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining.
807–816.
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