A Nomenclature

We summarize the main symbols used in this work and their definitions below:

Table A.1: Major symbols and definitions.

Symbols Definitions

G=W,¢ graph G with nodeset V, edgeset £

A n x n adjacency matrix of G

X n x F node feature matrix of G

Xy F-dimensional feature vector for node v

L unnormalized graph Laplacian matrix

y set of class labels

Yo class label for node v € V

y n-dimensional vector of class labels (for all the nodes)

Tv = {(v1,y1), (v2,y2), ...} training data for semi-supervised node classification

N(v) general type of neighbors of node v in graph G

N(v) general type of neighbors of node v in G without self-loops (i.e., excluding v)

N;(v), Ni(v) i-hop/step neighbors of node v in G (at exactly distance 7) maybe-with/without
self-loops, resp.

& set of pairs of nodes (u, v) with shortest distance between them being 2

d, diax node degree, and maximum node degree across all nodes v € V), resp.

h edge homophily ratio

H class compatibility matrix

rg,k) node representations learned in GNN model at round / layer k

K the number of rounds in the neighborhood aggregation stage

W learnable weight matrix for GNN model

o non-linear activation function

| vector concatenation operator

AGGR function that aggregates node feature representations within a neighborhood

COMBINE function that combines feature representations from different neighborhoods

B Homophily and Heterophily: Compatibility Matrix

As we mentioned in § 2] the edge homophily ratio in Definition [T] gives an overall trend for all the
edges in the graph. The actual level of homophily may vary within different pairs of node classes,
i.e., there is different tendency of connection between each pair of classes. For instance, in an online
purchasing network [24]] with three classes—fraudsters, accomplices, and honest users—, fraudsters
connect with higher probability to accomplices and honest users. Moreover, within the same network,
it is possible that some pairs of classes exhibit homophily, while others exhibit heterophily. In belief
propagation [40]], a message-passing algorithm used for inference on graphical models, the different
levels of homophily or affinity between classes are captured via the class compatibility, propagation
or coupling matrix, which is typically pre-defined based on domain knowledge. In this work, we
define the empirical class compatibility matrix H as follows:

Definition 4 The class compatibility matrix H has entries [H); ; that capture the fraction of outgoing
edges from a node in class i to a node in class j:

o K@) (wv) € ENyu =i Nyo = j}
[H]z,] ‘{(u, v) (u’y) EENYy = ’L}‘

By definition, the class compatibility matrix is a stochastic matrix, with each row summing up to 1.

13

C Proofs and Discussions of Theorems

C.1 Detailed Analysis of Theorem 1

Proof 1 (for Theorem[I) We first discuss the GCN layer formulated as f(X; A, W) = (A+T)XW.
Given training set ‘T, the goal of the training process is to optimize the weight matrix W' to minimize
the loss function L([(A+1)X] 7, . W, [Y]r, ..), where [Y|r, . is the one-hot encoding of class labels
provided in the training set, and [(A + I)X]r, . W is the predicted probability distribution of class
labels for each node v in the training set Ty,.

Without loss of generality, we reorder Ty, accordingly such that the one-hot encoding of labels for
nodes in training set [Y |, . is in increasing order of the class label y,,:

1 0 0 --- 07
1 0 0 | 0
010 -0
Y= |0 10 0 ©)
000 - 1
0 0 0 1

- = VIx|YI

Now we look into the term [(A + I)X]r, ., which is the aggregated feature vectors within neigh-
borhood N for nodes in the training set. Since we assumed that all nodes in Ty, have degree d,
proportion h of their neighbors belong to the same class, while proportion Dl]‘%hl of them belong to

any other class uniformly, and one-hot representations of node features x,, = onehot(y,) for each
node v, we obtain:

hd+1 mrtyd pityd o]
M1 g e
At hd+l gehd e detd
(A% = | gd M1 g o gk o
A g e o hdel
EE T e

= VIx[Y|

For (Y], . and [(A+1)X] 7, . that we derived in Eq. (9) and (10), we can find an optimal weight ma-
trix W such that [(A+I)X] 7, . W, = [Y]7, ., making the loss L([(A+D)X] 7, .-W., [Y]7,.) =0.

We can use the following way to find W ,.: First, sample one node from each class to form a smaller

14

set Ts C Ty, therefore we have:

1 0 0 0
o1 0 --- 0
Y], = Lo : - I|y\><\37|
000 L yixy)
and 1-h 1—h 1-}
(A +DX]7s,. = pr-1d hd+1 prgd o pd
Syt T
1—h 1% 1-h . .
pr-i¢ preid e o ML

Note that [(A + I)X]r, . is a circulant matrix, therefore its inverse exists. Using the Sherman-
Morrison formula, we can find its inverse as:

1
A+DX]+)= .
(A +DXIre) ™ == 1+ (=D
(V1= 1) + (V] = 2+ h)d (h—1)d (h—1)a
(h—1)d Y-+ (YI-2+h)d --- (h—1)d
(h—1)d (h—1)d (V= 1)+ (Y] — 2+ h)d

Let W, = ([(A+D)X]75..)"", and we have [(A + 1)X]7. W, = [Y]7,. = Ly« |y It is also

easy to verify that [(A + 1)X] 7, . W, = [Y]5,.. W, = ([((A +1)X]7,.)" " is the optimal weight
matrix we can learn under Ty, since it satisfies L([(A + D) X]r, W, [Y]7,..) =0.

Now consider an arbitrary training datapoint (v,y,) € Ty, and a perturbation added to the
neighborhood N (v) of node v, such that the number of nodes with a randomly selected class
label y,, € Y # 1y, is 01 less than expected in N (v). We denote the perturbed graph adjacency matrix
as A a. Without loss of generality, we assume node v has y,, = 1, and the perturbed class is y, = 2.
In this case we have

(Aa+ DXy, = [hd+1 petd =& petd - pityd |

Applying the optimal weight matrix we learned on Ty, to the aggregated feature on the perturbed
neighborhood [(Aa + I)X], ., we obtain [(Aa + I)X], . W, which equals to:

1 (h=1)ds, (Y=Y —24m s (h=1)ds, L (h=1)ds,
@DHE-Dd @OV 1HVRh-Dd) @)1+ (Vh-1)d) @DV 1+H(VTA-1)d)

. (h—1)ds (h—1)ds
Notice that we always have 1 — (d+1)(\y|71+(|)11\h71)d) > — (d+1)(|y|71+(|)11\h71)d)’ thus the GCN

layer formulated as (A + 1)XW would misclassify only if the following inequality holds:
(h —1)dd, ((Y[=1) + (Y] =2+ h)d)d

@+ DV~ 1+ (D -Dd) = (d+ (Y[~ L+ (Yh - D)

Solving the above inequality for 61, we get the amount of perturbation needed as

5 > W,Wheno <h< flll)a\jlrctliJrl
8§ < “hVId-IYl+d+1 —|Y|+d+1 (11
1 V-1 Y[d

—h|Y]d—|Y|+d+1
6] = |,

,when h >
and the least absolute amount of perturbation needed is
Now we move on to discuss the GCN layer formulated as f(X; A, W) = AXW without self

loops. Following similar derivations, we obtain the optimal weight matrix W, which makes
‘C([AX]Tv,iw*? [Y]Tv,i) = 0as:

—(Y[=2+h) 1—h -
W, = (AX]7) = L—h —(Y=2+h) - -
.= Tsr) TRV : E
o 1oh e (V]S 24h)
(12)

15

Again if for an arbitrary (v,y,) € Ty, a perturbation is added to the neighborhood N (v) of the node
v, such that the number of nodes with a randomly selected class label y, € Y # y, is 2 less than
expected in N (v), we have:

1—h 1—-h 1—h
[AaX]y: = | hd pgd =02 prgd - \yl—ld}

Then applying the optimal weight matrix that we learned on Ty, to the aggregated feature on perturbed
neighborhood [AAX], ., we obtain [AaX], W . which equals to:

[1_ (1=h)sy (I¥|=2+h)s (1—h)os (1—h)ss }
(

1-hl¥Dd (1-h[YDd (1-hIYDd (1-hYDd
Thus, the GCN layer formulated as AXW would misclassify when the following inequality holds:
(1 —h)dy - (1Y =2+ h)ds
(A=nYDd ~ (L=hY))d

1—

Or the amount of perturbation is:

(A=h|Y))d 1
{52 > (19,’1“_)}')(1,When 0< h1<] (13)
52 < W7W}l€nh > m
As a result, the least absolute amount of perturbation needed is |02 = |(1‘_yh|# |-

By comparing the least absolute amount of perturbation needed for both formulations to misclassify
(|61] = |W| derived in Eq. (11)) for the (A + I1)XW formulation; 02| = |(1|7th#|
derived in Eq. (13) for the AXW formulation), we can see that |01| = |02| if and only if 1 = —da,
which happens when h = %. When h < % (heterophily), we have |01| < |d2|, which

means the (A + I)XW formulation is less robust to perturbation than the AXW formulation. R

Discussions From the above proof, we can see that the least absolute amount of perturbation |J]|
needed for both GCN formulations is a function of the assumed homophily ratio 5, the node degree d
for each node in the training set 7Ty, and the size of the class label set |)|. Fig. 4| shows the plots of
|01| and |d2| as functions of h, || and d: from Fig. 4al we can see that the least absolute amount
of perturbations |4| needed for both formulation first decreases as the assumed homophily level h
increases, until 0 reaches 0, where the GCN layer predicts the same probability for all class labels;
after that, 0 decreases further below 0, and |§| increases as h increases; the (A + I)XW formulation
1-|Y|+2d
e
as our proof shows, where |d| = |d2|. Figure [4b]shows the changes of |4| as a function of |Y'| when
fixed h = 0.1 and d = 20. For both formulations, |§| first decrease rapidly as || increases until &
reaches 0, after that ¢ increases slowly as || increases; this reveals that both GCN formulations are
more robust when || << d under high homophily level, and in that case AX'W formulation is
more robust than the (A + I)X'W formulation. Figure 4c|shows the changes of |d| as a function of d
for fixed h = 0.1 and |Y| = 5: in this case the AX'W formulation is always more robust than the
(A +I)XW formulation, and for the (A + I)X'W formulation, |J| follows again a “V”-shape curve
as d changes.

is less robust to perturbation than the AXW formulation at low homophily level until h =

C.2 Detailed Analysis of Theorem 2

Proof 2 (for Theorem[2) For all v € V), since its neighbors’ class labels {y,, : v € N(v)} are
conditionally independent given y,,, we can define a matrix P, for each node v as [P,); j = P(y, =
Jlyy =1),Vi,j € Y, u € N(v). Following the assumption that for all v € V, P(yy = Yu|ys) = h,

P(yu = ylyo) = 725, ¥y # Yo, we have

1—h 1—h
h o pEr o
1—h h . lfhl

—1 —

S o P wey (14)
1—h 1-h) X
V-1 -1 h

—— |64] for the (A+1)XW Formulation |64] for the (A+I)XW Formulation —— |64] for the (A+)XW Formulation

rrrrr |6,| for the AXW Formulation ----- |6y for the AXW Formulation ----- |62| for the AXW Formulation
10
8
S 6
4 ‘\
2 . -
0 v e e
00 02 04 06 08 1.0 10 15 20 5 10 15 20 25 30
h | d
(a) |9| as a function of h under (b) 4] as a function of | Y| under (c) |8 as a function of d under
d=20,|Y| =5. h =0.1,d = 20. h=0.1,|Y| =5.

Figure 4: Perturbation |0| needed in order for GCN layers (A + I)XW and AX'W to misclassify a
node: Examples of perturbation |§| as functions of h, || and d, respectively.

Now consider node w € Na(v), we have:

Plyw =Klyo =) = Y Plyw = Klyu =)Py = jlys = 1) = > [Pl;x[Pls; = P? (15)
JEIYI JEIYI

Therefore, to prove that the 2-hop neighborhood Ny (v) for any node v € V is homophily-dominant
in expectation (i.e. P(yy = t|y, = 1) > P(yw = jlys = 1),Vj € Y # i,w € No(v)), we need to
show that the diagonal entries [P?); ; of P? are larger than the off-diagonal entries [P?]; ;.

Denote p = ‘;Tfl. From Eq. (T4), we have
[P?ii = b+ (|Y] = 1)p? (16)
and for 1]
fort7.d P2, =2h —2)p? 17
[P=lij =2hp+ (|Y| = 2)p (17)
Thus,

[Pz]m - [Pz]i,j =h®—2hp+p® = (h—p)> >0

with equality if and only if h = p, namely h = \Tlil Therefore, we proved that the 2-hop neighborhood
Ny (v) for any node v € V will always be homophily-dominant in expectation. |

C.3 Detailed Analysis of Theorem 3

Preliminaries We define unnormalized Laplacian matrix of graph G as L = D — A, where
A € {0, 1}Vl is the adjacency matrix and D is the diagonal matrix with [D]; ; = Y [A], ;.
Without loss of generality, since the eigenvalues {\; } of L are real and nonnegative [32]], we assume
the following order for the eigenvalues of L: 0 = Ag < A1 < Ay < -+ < Ayj-1 = Apaa-
Furthermore, since L is real and symmetric, there exists a set of orthonormal eigenvectors {v; } that
form a complete basis of RIV!. This means that for any graph signal s € RIVl, where s,, is the value
of the signal on node v € V, it can be decomposed to a weighted sum of {v;}. Mathematically,
s is represented as s = ZLZ'& ! Cs,iVi, where ¢y ; = sTv,;. We regard c, ; as the coefficient of s
at frequency component ¢ and regard the coefficients at all frequencies components {c; ;} as the
spectrum of signal s with respect to graph G. In the above order of the eigenvalues, \; which are
closer to O would correspond to lower-frequency components, and \; which are closer to A4, would
correspond to higher-frequency components. Interested readers are referred to [32] for further details
regarding signal processing on graphs.

The smoothness score of a signal s on graph G, which measures the amount of changes of signal s
along the edges of graph G, can be defined using L as

s'Ls = ZAij(sZ— — sj)2 = Z Z (su — sv)z. (18)
1,J

u€V veEN (u)

17

Then, for two eigenvectors v; and v; corresponding to eigenvalues \; < A; of L, we have:
V;rLVi = /\1 S)‘j = V;!—LVJ‘
which means that v; is more smooth than v;. This matches our expectations that a lower-frequency

signal on G should have smaller smoothness score. The smoothness score for arbitrary graph
signal s € R!VI can be represented by its coefficients of each frequency component as:

[V|—1
STLS = (Z CSJ'Vi) L (Z cs,ivl) = Z C?)i)\i (19)
i i i=0
with the above preliminaries, we can define the following concept:

Definition 5 Suppose s = ELZ‘O Cs,iViandt = ZM ct,iV; are two graph signals defined on
G. In the spectrum of the unnormalized graph laplacian L, graph signal s has higher energy on

high- frequency components than t if there exists integer 0 < M < |V| — 1 such that ZMM cs ;>
Vi-1

ZI |-

Based on these preliminary definitions, we can now proceed with the proof of the theorem:

Proof 3 (for Theorem[3) We first prove that for graph signals s, t € {0, 1}|V‘, edge homophily
ratio hs < hy if and only if s"Ls > tTLt. Following Dfn.|l} the edge homophily ratio for signal s
(similarly for t) can be calculated as:

1 1
hs:ﬁg dy — Z (Su_sv>2 :mgdu |Z Z SUQ (20)

vEN (v) u€V veN (v)
Plugging this in Eq. (I8), we obtain:
1 1
hs = — —STLS =1——s'Ls
“ =g 2 3 20¢]

where |E| is the number of edges in G. From the above equation, we have

1 1
he<h © 1——s"Ls<1——t'Lt & s'Ls>t'Lt
' 2[€] 2[¢] °

i.e. edge homophily ratio hy < hy if and only if s"Ls > tTLt.

Next we prove that if s"Ls > tTLt, then following Dﬁfz.E] signal s has higher energy on high-
Sfrequency components than t. We prove this by contradiction: suppose integer 0 < M < |V| —1

does not exist such that ZM ! % Zlv‘ ! 2. when s'Ls > t"Lt, then all of the following
inequalities must hold, as the etgenvalues of Lisatisfy 0 =g < A1 < X <+ <)\|v| 1= Amaz:

0=Xo(c2g+ciy+ciot el 1) =olcio+ iy +ciat -+ c?,w._l) =0
(A — /\0)(05,1 + 03,2 +ot C§,|v|—1) < (A — /\0)(03,1 + CiQ +oet Cf,\v|_1)
(Ao = A) (o +--+ C§,|v|—1) <= M)(at -+ Cf,|v|—1)

2 2
(Api—1 = Aw=2)¢s jv—1 < Apwj—1 = Ayj—2)eg v
Summing over both sides of all the above inequalities, we have

Mo+t AL-CS 1A Ry Ay 1o¢S y_1 S Aosch o T AL C 1 F A2 gt A Ay 16y
ie., ZLZIO_l AN < ZLZ'O ' 2 \;. However, from Eq. (19), we should have

V|-1 v|-1
s'Ls>t'Lt Z AN > Z AN
i=0 i=0
which contradicts with the previous resulting inequality. Therefore, the assumption should not
hold, and there must exist an integer 0 < M < |V| — 1 such that ZM Y2 > ZLV‘Ml 2, when
s'Ls > t'Lt. [|

18

Extension of Theorem [3|to one-hot encoding of class label vectors Theorem [3|discusses only
the graph signal s, t € {0, 1}V with only 1 channel (i.e., with only 1 value assigned to each node).

It is possible to generalize the theorem to one-hot encoding Y, Y, € {0, 1}|V| <Yl as graph signal
with | V|-channels by modifying Dfn. [5|as follows:

Definition 6 Suppose [Y } EM ! Cs,j,iVi and [Yt]: ZM ! ¢t,4,iVi are one-hot encoding
of class label vector y s,y deﬁned as graph signals on G, where Cs,ji = [YS}Ijvi is the coefficient

of the jth-channel of Y s at frequency component i. In the spectrum of the unnormalized graph
laplacian L, graph signal Y s has higher energy on high -frequency components than Y if there

exists integer 0 < M < |V| — 1 such that ZLZ‘Ml Z] L€ Zlvl ! Zj L

Under this definition, we can prove Theorem 3 for one-hot encoding of class label vectors Y, Y; as
before, with the modification that in this case we have for signal Y, (similarly for Y):

1
hszmz 2d, — > Z — Y])?
uey

vEN (v) j=1

instead of Eq. (20). The rest of the proof is similar to Proof 3]

D Our H;GCN model: Details

In this section, we give the pipeline and pseudocode of HoGCN, elaborate on its differences from
existing GNN models, and present a detailed analysis of its computational complexity.

D.1 Pseudocode & Pipeline

In Fig. [5] we visualize HoGCN, which we describe in § We also give its pseudocode in
Algorithm]

D.2 Detailed Comparison of H;GCN to existing GNN models

In § we discussed several high-level differences between HoGCN and the various GNN models
that we consider in this work, including the inclusion or not of designs D1-D3. Here we give some
additional conceptual and mechanism differences.

As we have mentioned, HoGCN differs from GCN [17] in a number of ways: (1) In each round
of propagation/aggregation, GCN “mixes” the ego- and neighbor-representations by repeatedly
averaging them to obtain the new node representations, while HoGCN keeps them distinct via
concatenation; (2) GCN considers only the 1-hop neighbors (including the ego / self-loops), while
H>GCN considers higher-order neighborhoods (/N7 and Ns); (3) GCN applies non-linear embedding
transformations per round (e.g., RELU), while HoGCN perform feature embedding for the ego in
the first layer and drops all other non-linearities in the aggregation stage; and (4) GCN does not use
the jumping knowledge framework (unlike HoGCN), and makes the node classification predictions
based on the last-round representations.

Unlike GAT, HoGCN does not use any attention mechanism. Creating attention mechanisms that can
generalize well to heterophily is an interesting future direction. Moreover, GCN-Cheby uses entirely
different mechanisms than the other GNN models that we consider (i.e., Chebysev polynomials),
though it has some conceptual similarities to HoGCN in terms of the higher-order neighborhoods
that it models.

GraphSAGE differs from HoGCN in the same ways that are described in (2)-(4) above. In addition to
leveraging only the 1-hop neighborhood, GraphSAGE also samples a fixed number of neighbors per
round, while HoGCN uses the full neighborhood. With respect to ego- and neighbor-representations,
GraphSAGE concatenates them (as we do) but subsequently applies non-linear embedding transfor-
mations to them jointly (while we simplify all non-linear transformations). Our empirical analysis
has revealed that such transformations lead to a decrease in performance in heterophily settings (see
paragraph below on “Non-linear embedding transformations...”).

19

{ V(? = weighted_avg({ rum):u € b

Tv(,l) = weighted_avg({ TLEU):u €N,(v)}

2

@ © Is X
(1) o B ¥ é-.u_rél):(r;?HTv(,?)
— el O /] ')
2 = o(xWe) L O (S2-Round 1)

N N N, (1)
® e (1) 1) i

(1)

41 a2

oW
71 f72 .5‘2 O}

o

1 1]
o 2 "(12’.2

0) () A1) 2 [2)
LA AL (LYY AL R

L) 2 [(2)
o o o) 74 172 = Ti41 a2

R
o o)) (S3) 2 1) o (S2-Round 2)
Rl)

2
2) (2) 31 "'3)2

R 0 R R
(2) (2
A9 @12,

)) T &

r(? = weighted,avg({r,fl) :u € Ny(v)})

i Ty,

V(;) = weighted_avg({ ru(l): u € N,(v)})

2) (2
L)

o) @)1,.2)
i final 0 bl 2 H i =
0 = GO PR | B = (i)

Figure 5: HoGCN-2 pipeline. It consists of 3 stages: (S1) feature embedding, (S2) neighborhood
aggregation, and (S3) classification. The feature embedding stage (S1) uses a graph-agnostic dense
layer to generate the feature embedding r{” of each node v based on its ego-feature x,,. In the
neighborhood aggregation stage (S2), the generated embeddings are aggregated and repeatedly
updated within the node’s neighborhood; the 1-hop neighbors N; (v) and 2-hop neighbors Ny (v) are
aggregated separately and then concatenated, following our design D2. In the classification stage
(S3), each node is classified based on its final embedding riﬁ“al), which consists of its intermediate
representations concatenated as per design D3.

Finally, MixHop differs from HoGCN in the same ways that are described in (1) and (3)-(4) above. It
explicitly considers higher-order neighborhoods up to Ny, though [1]] defines the 2-hop neighborhoods
as that including neighbors up fo 2-hop away neighbors. In our framework, we define the i-hop
neighborhood as the set of neighbors with minimum distance exactly ¢ from the ego (§ [2). Finally, the
output layer of MixHop uses a tailored, column-wise attention layer, which prioritizes specific features,
before the softmax layer. In contrast, before the classification layer, HoGCN uses concatenation-
based jumping knowledge in order to represent the high-frequency components that are critical in
heterophily.

Non-linear embedding transformations per round in H,GCN? GCN [17], GraphSAGE [11]
and other GNN models embed the intermediate representations per round of feature propagation
and aggregation. However, as we show in the ablation study in App. (Table @ last row
“Non-linear”), introducing non-linear transformations per round of the neighborhood aggregation
stage (S2) of HoGCN-2 (i.e., with K = 2) as follows leads to worse performance than the framework
design that we introduce in Eq. () of § 3.2}

r*) — COMBINE (a (W [rg’“‘”, AGGR{r{" ™V 1w e Ni(v)},AGGR{r" ™ s u € NQ(U)}])) , @D

where o is RELU and W is a learnable matrix. Our design in Eq. [5] aggregates different neigh-
borhoods in a similar way to SGC [37]], which has shown that removing non-linearities does not
negatively impact performance in homophily settings. We actually find that removing non-linearities
even improves the performance under heterophily.

D.3 H,;GCN: Time Complexity in Detail

Preliminaries The worst case time complexity for calculating A - B when both A and B are
sparse matrices is O(nnz(A) - cg), where nnz(A) is the number of non-zero elements in matrix

20

Algorithm 1: H,GCN Framework for Node Classification under Homophily & Heterophily

Input: Graph Adjacency Matrix A € {0, 1}™*™; Node Feature Matrix X € R™* ' Set of Labels V;
Labeled Nodes Ty
Hyper-parameters: Dropout Rate; Non-linearity function o; Number of Embedding Rounds K;
Dimension of Feature Embedding p;

Network Parameters: W, € RF"*P, W, e R@KH’””D"
Output: Class label vector y
begin

forv € Vdo
L rS,O) — o (xy We)

Ao(—In

A +~I[A-1I,>0]

Ay« I[A*—A-1,>0;
for i < 1to 2 do
for v € V do

L dv,i — Zk dvk,i
D; < diag{d,,;:v € V};
| A<D, ?AD,*
for k£ < 1to K do
ng) < AlR(k_l)
R{"Y « A,R*D);

| R(k) - (ng)Hng))

R ¢ (R<°)||R(1)|\ S HR(K))

R« dropout(R"))
forv € Vdo
Pv softmax(rgmal)Wc);
Yo + arg max(py)

A, and cg = max(d_;I[b;; > 0]) is the maximum number of non-zero elements in any row of

matrix B. The time complexity for calculating A - X, when X is a dense matrix with F' columns, is
O(nnz(A)F).

Time complexity of H;GCN We analyze the time complexity of HoGCN by stage (except the
classification stage).

The feature embedding stage (S1) takes O(nnz(X)p) to calculate (X W,) where W, € R *P is a
learnable dense weight matrix, and X € R™*¥" is the node feature matrix.

In the neighborhood aggregation stage (S2), we perform the following computations:
* Calculation of higher-order neighborhoods. Given that A is sparse, we can obtain the 2-hop
neighborhood by calculating A? in O (|€|dyax), where |€] is the number of edges in G (equal to

the number of non-zeroes in A), and d .« is the maximum degree across all nodes v € V (which
is equal to the maximum number of non-zeroes in any row of A).

* Feature Aggregation. We begin with a p-dimensional embedding for each node after feature
embedding. In round k, since we are using the neighborhoods N; and N;, we have an em-

21

bedding R*—1 ¢ Rx2*7Vp g input. We aggregate embedding vectors within neighbor-
hood by R%) = (A;R*~D||A,R*~V), in which A; corresponds to the adjacency matrix
of neighborhood N;. The two sparse matrix-matrix multiplications in the concatenation take
O (|€]2¢k=Vp 4 |&5[2k=Vp), where |E5| = £ 3=, 1, [N2(v)|. Over K rounds of embedding, the

complexity becomes O (ZK(|5\ + |52|)P)-

veY

Adding all the big-O terms above, we have the overall time complexity for stages (S1) and (S2) of
H5>GCN as:
O (nnz(X) p + |€|dmax + 25 (€] + |E2])p) ,

where K is usually a small number (e.g., 2). For small values of K, the complexity becomes
O (|€ldmax + (nnz(X) + [E] + |E2])p).

E Additional Related Work

In § @ we discuss relevant work on GNNs. Here we briefly mention other approaches for node
classification.

Collective classification in statistical relational learning focuses on the problem of node classification
by leveraging the correlations between the node labels and their attributes [[30]. Since exact inference
is NP-hard, approximate inference algorithms (e.g., iterative classification [14} 20], loopy belief
propagation) are used to solve the problem. Belief propagation (BP) [40] is a classic message-
passing algorithm for graph-based semi-supervised learning, which can be used for graphs exhibiting
homophily or heterophily [19] and has fast linearized versions [[10} [§]. Different from the setup
where GNNs are employed, BP does not by itself leverage node features, and usually assumes a
pre-defined class compatibility or edge potential matrix (§ 2). We note, however, that Gatterbauer
[9] proposed estimating the class compatibility matrix instead of using a pre-defined one in the
BP formulation. Moreover, the recent CPGNN model [43] integrates the compatibility matrix as
a set of learnable parameters into GNN, which it initializes with an estimated class compatibility
matrix. Another classic approach for collective classification or graph-based semi-supervised learning
is label propagation, which iteratively propagates the (up-to-date) label information of each node
to its neighbors in order to minimize the overall smoothness penalty of label assignments in the
graph. Standard label propagation approaches inherently assume homophily by penalizing different
label assignments among immediate neighborhoods, but more recent works have also looked into
formulations which can better address heterophily: Before applying label propagation, Peel [25]
transforms the original graph into either a similarity graph by measuring similarity between node
neighborhoods or a new graph connecting nodes that are two hops away; Chin et al. [6] decouple
graph smoothing where the notion of “identity” and “preference” for each node are considered
separately. However, like BP, these approaches do not by themselves utilize node features.

F Experimental Setup & Hyperparameter Tuning

F.1 Setup

H>;GCN Implementation We use K = 1 for HoGCN-1 and K = 2 for H,GCN-2. For loss
function, we calculate the cross entropy between the predicted and the ground-truth labels for nodes
within the training set, and add L regularization of network parameters W, and W.. (cf. Alg.[T)

Baseline Implementations For all baselines besides MLP, we used the official implementation
released by the authors on GitHub.
* GCN & GCN-Cheby [17]: https://github.com/tkipf/gcn

* GraphSAGE [11]: https://github.com/williamleif/graphsage-simple (PyTorch im-
plementation)

* MixHop [1]: https://github.com/samihaija/mixhop

* GAT [36]: https://github.com/PetarV-/GAT. (For large datasets, we make use of the sparse
version provided by the author.)

22

https://github.com/tkipf/gcn
https://github.com/williamleif/graphsage-simple
https://github.com/samihaija/mixhop
https://github.com/PetarV-/GAT

For MLP, we used our own implementation of MLP with 1-hidden layer, which is equivalent to the
case of K = 0 in Algorithm 1. We use the same loss function as HoGCN for training MLP.

Hardware Specifications We run experiments on synthetic benchmarks with an Amazon EC2
instance with instance size as p3.2xlarge, which features an 8-core CPU, 61 GB Memory, and
a Tesla V100 GPU with 16 GB GPU Memory. For experiments on real benchmarks, we use a
workstation with a 12-core AMD Ryzen 9 3900X CPU, 64GB RAM, and a Quadro P6000 GPU with
24 GB GPU Memory.

F.2 Tuning the GNN Models

To avoid bias, we tuned the hyperparameters of each method (HGCN and baseline models) on
each benchmark. Below we list the hyperparameters tested on each benchmark per model. As the
hyperparameters defined by each baseline model differ significantly, we list the combinations of
non-default command line arguments we tested, without explaining them in detail. We refer the
interested reader to the corresponding original implementations for further details on the arguments,
including their definitions.

Synthetic Benchmark Tuning For each synthetic benchmark, we report the results for different
heterophily levels under the same set of hyperparameters for each method, so that we can compare
how the same hyperparameters perform across the full spectrum of low-to-high homophily. We report
the best performance, for the set of hyperparameters which performs the best on the validation set on
the majority of the heterophily levels for each method.

For syn-cora, we test the following command-line arguments for each baseline method:

* H;GCN-1 & H,GCN-2:
— Dimension of Feature Embedding p: 64

— Non-linearity Function o: ReLU

- Dropout Rate: a € {0,0.5}

We report the best performance, for a = 0.
* GCN [17]:

- hiddenl: a € {16, 32,64}

- early_stopping: b € {40,100, 200}

— epochs: 2000

We report the best performance, for a = 32,b = 40.
¢ GCN-Cheby [17]:

— Set 1:
* hiddenl: a € {16, 32,64}
% dropout: 0.6
* weight_decay: b € {le-5, be-4}
* max_degree: 2
* early_stopping: 40
— Set 2:
* hiddenl: a € {16,32,64}
% dropout: 0.5
* weight_decay: be-4
* max_degree: 3
* early_stopping: 40

We report the best performance, for Set 1 with a = 64,b = 5e-4.
* GraphSAGE [11]:

- hid_units: a € {64,128}

- 1r: b € {0.1,0.7}

— epochs: 500

23

We report the performance with a = 64,b = 0.7.
* MixHop [1]:

— hidden_dims_csv: a € {64,192}

— adj_pows: 0, 1,2

We report the performance with a = 192.
* GAT [36]:

— hid_units: a € {8,16, 32,64}

- n_heads: b € {1,4,8}

We report the performance with a = 8,b = 8.
* MLP

— Dimension of Feature Embedding p: 64
— Non-linearity Function o: ReLU
— Dropout Rate: 0.5

For syn-products, we test the following command-line arguments for each baseline method:

* H;GCN-1 & H,GCN-2:

— Dimension of Feature Embedding p: 64

— Non-linearity Function o: ReLU

- Dropout Rate: a € {0,0.5}

We report the best performance, for a = 0.5.
* GCN [17]:

— hiddenl: 64

- early_stopping: a € {40,100, 200}

— epochs: 2000

In addition, we disabled the default feature normalization in the official implementation, as the
feature vectors in this benchmark have already been normalized, and we found the default normal-
ization method hurts the performance significantly. We report the best performance, for a = 40.

* GCN-Cheby [17]:
hidden1: 64
max_degree: 2
early_stopping: 40
epochs: 2000
We also disabled the default feature normalization in the official implementation for this baseline.
e GraphSAGE [11]:
- hid_units: a € {64,128}
- 1r: b € {0.1,0.7}
— epochs: 500
We report the performance with a = 128,b = 0.1.
e MixHop [1]:
— hidden_dims_csv: a € {64,192}
— adj_pows: 0, 1,2

We report the performance with a = 192.
* GAT [36]:

— hid_units: 8

We also disabled the default feature normalization in the official implementation for this baseline.
« MLP

— Dimension of Feature Embedding p: 64
— Non-linearity Function o: ReLU
— Dropout Rate: 0.5

24

Real Benchmark (except Cora-Full) Tuning For each real benchmark in Table [5](except Cora-
Full), we perform hyperparameter tuning (see values below) and report the best performance of each
method on the validation set. So, for each method, its performance on different benchmarks can be
reported from different hyperparameters. We test the following command-line arguments for each
baseline method:

* H,GCN-1 & H,GCN-2:
— Dimension of Feature Embedding p: 64
— Non-linearity Function o: {ReLU, None}
— Dropout Rate: {0,0.5}
— L2 Regularization Weight: {1e-5, 5e-4}
* GCN [17]:
— hiddenl: 64
- early_stopping: {40,100, 200}
— epochs: 2000
* GCN-Cheby [17]:
— hiddenl: 64
— weight_decay: {le-5, 5e-4}
— max_degree: 2
- early_stopping: {40,100, 200}
— epochs: 2000
* GraphSAGE [11]:
— hid_units: 64
- 1r: {0.1,0.7}
— epochs: 500
* MixHop [[1]:
— hidden_dims_csv: {64,192}
— adj_pows: 0, 1,2
* GAT [36]:
— hid_units: 8
« MLP
— Dimension of Feature Embedding p: 64
- Non-linearity Function o: {ReLU, None}
- Dropout Rate: {0,0.5}

For GCN+JK, GCN-Cheby+JK and GraphSAGE+JK, we enhanced the corresponding base model
with jumping knowledge (JK) connections using JK-Concat [38] without changing the number of
layers or other hyperparameters for the base method.

Cora Full Benchmark Tuning The number of class labels in Cora-Full are many more compared
to the other benchmarks (Table [5)), which leads to a significant increase in the size of training
parameters for each model. Therefore, we need to re-tune the hyperparameters, especially the
regularization weights and learning rates, in order to get reasonable performance. We test the
following command-line arguments for each baseline method:

* H;GCN-1 & H,GCN-2:
— Dimension of Feature Embedding p: 64
— Non-linearity Function o: {ReLU, None}
- Dropout Rate: {0,0.5}
- L2 Regularization Weight: {1e-5, 1le-6}
« GCN [17):

25

hiddenl: 64
early_stopping: {40, 100,200}
weight_decay: {5e-5, le-5, le-6}
epochs: 2000
« GCN-Cheby [17]:
— hiddenl: 64
- weight_decay: {5e-5, le-5, le-6}
— max_degree: 2
- early_stopping: {40,100, 200}
— epochs: 2000
* GraphSAGE [L1]:
— hid_units: 64
- 1r: 0.7
— epochs: 2000
* MixHop [1]:
- adj_pows: 0, 1,2
- hidden_dims_csv: {64,192}
- l2reg: {5e-4, 5e-5}
* GAT [36]:
— hid_units: 8
- 12_coef: {be-4, 5e-5, le-5}
« MLP
Dimension of Feature Embedding p: 64
Non-linearity Function o: {ReLU, None}
Dropout Rate: {0,0.5}
L2 Regularization Weight: 1e-5
Learning Rate: 0.05

For GCN+JK, GCN-Cheby+JK and GraphSAGE+]JK, we enhanced the corresponding base model
with jumping knowledge (JK) connections using JK-Concat [38] without changing the number of
layers or other hyperparameters for the base method.

26

G Synthetic Datasets: Details

G.1 Data Generation Process & Setup

Synthetic graph generation We generate synthetic graphs with various heterophily levels by
adopting an approach similar to [1}|16]. In general, the synthetic graphs are generated by a modified
preferential attachment process [3]]: The number of class labels || in the synthetic graph is prescribed.
Then, starting from a small initial graph, new nodes are added into the graph one by one, until the
number of nodes |V| has reached the preset level. The probability p,,, for a newly added node w in
class 4 to connect with an existing node v in class j is proportional to both the class compatibility H;;
between class 7 and 7, and the degree d,, of the existing node v. As a result, the degree distribution for
the generated graphs follow a power law, and the heterophily can be controlled by class compatibility
matrix H. TableE] shows an overview of these synthetic benchmarks, and more detailed statistics can
be found in Table[G.1l

Node features & classes Nodes are assigned randomly to each class during the graph generation.
Then, in each synthetic graph, the feature vectors of nodes in each class are generated by sampling
feature vectors of nodes from the corresponding class in a real benchmark (e.g., Cora [30, 39] or
ogbn-products [13]]): We first establish a class mapping ¢ : Vs —), between classes in the
synthetic graph) to classes in an existing benchmark). The only requirement is that the class size
in the existing benchmark is larger than that of the synthetic graph so that an injection between nodes
from both classes can be established, and the feature vectors for the synthetic graph can be sampled
accordingly. For syn-products, we further restrict the feature sampling to ensure that nodes in
the training, validation and test splits are only mapped to nodes in the corresponding splits in the
benchmark. This process respects the data splits used in ogbn-products, which are more realistic
and challenging than random splits [13]]. For simplicity, in our synthetic benchmarks, all the classes
(5 for syn-cora and 10 for syn-products — Table[G.1) are of the same size.

Table G.1: Statistics for Synthetic Datasets

Benchmark Name syn-cora syn-products

Nodes 1490 10000

Edges 2965 to 2968 59640 to 59648

Classes 5 10
Features cora [30,[39] ogbn-products [13]
Homophily A [0,0.1,...,1] [0,0.1,...,1]
Degree Range 1 to 94 1to 336
Average Degree 3.98 11.93

Experimental setup For each heterophily ratio h of each benchmark, we independently generate
3 different graphs. For syn-cora and syn-products, we randomly partition 25% of nodes into
training set, 25% into validation and 50% into test set. All methods share the same training, partition
and test splits, and the average and standard derivation of the performance values under the 3
generated graphs are reported as the performance under each heterophily level of each benchmark.

G.2 Detailed Results on Synthetic Benchmarks
Tables[G.2]and [G.3] give the results on syn-cora and syn-products shown in Figure [2] of the main

paper (§5.1). Table[G.4]provides the detailed results of the ablation studies that we designed in order
to investigate the significance of our design choices, and complements Fig. [3|in § [5.1}

27

Table G.2: syn-cora (Fig. : Mean accuracy and standard deviation per method and synthetic
dataset (with different homophily ratio h). Best method highlighted in gray.
h 0.00 0.10 0.20 0.30 0.40 0.50

H>;GCN-1 77.40+0.89 76.82+1.30 73.38+0.95 75.26+0.56 75.66+2.19 80.22+1.35
H>;GCN-2 77.85+1.63 76.87+0.43 74.27+1.30 74.4140.43 76.33+1.35 79.60+0.48
GraphSAGE 75.97+1.94 72.8942.42 70.56+1.42 71.81+0.67 72.04+1.68 76.55+0.81
GCN-Cheby 74.23+0.54 68.10+1.75 64.70+1.17 66.71+1.63 68.14+1.56 73.33+2.05
MixHop 62.64+1.16 58.93+2.84 60.89+1.20 65.73+0.41 67.87+4.01 70.1140.34

GCN 33.65+1.68 37.14+4.60 42.82+1.89 51.10+0.77 56.91+2.56 66.22+1.04
GAT 30.16+1.32 33.11+1.20 39.11+0.28 48.81+1.57 55.35+2.35 64.52+0.47
MLP 72.754+1.51 74.85+0.76 74.05+0.69 73.78+1.14 73.33+0.34 74.81+1.90
h 0.60 0.70 0.80 0.90 1.00

HyGCN-1 83.62+0.82 88.14+0.31 91.63+0.77 95.53+0.61 99.06+0.27
H;GCN-2 84.43+1.89 88.28+0.66 92.39+1.34 95.97+0.59 100.00+0.00
GraphSAGE 81.25+1.04 85.06+0.51 90.78+1.02 95.08+1.16 99.87+0.00
GCN-Cheby 78.88+0.21 84.92+1.03 90.92+1.62 95.97+1.07 100.00+0.00
MixHop 79.78+1.92 84.43+0.94 91.90+2.02 96.82+0.08 100.00+0.00

GCN 77.32+41.17 84.52+0.54 91.23+1.29 96.11+0.82 100.00+0.00
GAT 76.29+1.83 84.03+0.97 90.92+1.51 95.88+0.21 100.00+0.00
MLP 73.42+1.07 71.72+0.62 72.26+1.53 72.53+2.77 73.65+0.41

Table G.3: syn-products (Fig. : Mean accuracy and standard deviation per method and synthetic
dataset (with different homophily ratio i). Best method highlighted in gray.
h 0.00 0.10 0.20 0.30 0.40 0.50

H>GCN-1 82.06+0.24 78.39+1.56 79.37+0.21 81.10+0.22 84.25+1.08 88.15+0.28
H;GCN-2 83.37+0.38 80.03+0.84 81.09+0.41 82.79+0.49 86.73+0.66 90.75+0.43
GraphSAGE 77.66+0.72 74.04+1.07 75.29+0.82 76.39+0.24 80.49+0.96 84.51+0.51
GCN-Cheby 84.35+0.62 76.95+0.30 77.07+0.49 78.43+0.73 85.09+0.20 89.66+0.53

MixHop 15.39+1.38 11.91+1.17 14.03+1.70 14.92+0.56 17.04+0.40 18.90+1.49
GCN 56.4440.59 51.51+0.56 54.97+0.66 64.90+0.90 76.25+0.04 86.43+0.58
GAT 27.3942.47 21.49+2.25 37.27+3.99 44.46+0.68 51.86+8.52 69.42+5.30
MLP 68.63+0.58 68.20+1.20 68.85+0.73 68.65+0.18 68.37+0.85 68.70+0.61
h 0.60 0.70 0.80 0.90 1.00

H>GCN-1 92.39+0.06 95.69+0.19 98.09+0.23 99.63+0.13 99.93+0.01
H;GCN-2 94.8140.27 97.67+0.18 99.13+0.05 99.89+0.08 99.99+0.01
GraphSAGE 89.51+0.29 93.61+0.52 96.66+0.19 98.78+0.11 99.63+0.08
GCN-Cheby 94.99+0.3¢ 98.26+0.11 99.58+0.11 99.93+0.06 100.00+0.00

MixHop 19.47+5.21 21.15+2.28 24.16+3.19 23.21+5.30 25.09+5.08
GCN 93.35+0.28 97.61+0.24 99.33+0.08 99.93+0.01 99.99+0.01
GAT 85.36+3.67 93.52+1.93 98.84+0.12 99.87+0.06 99.98+0.02
MLP 68.21+0.93 68.72+1.11 68.10+0.54 68.36+1.42 69.08+1.03

28

Table G.4: Ablation studies of HoGCN to show the significance of designs D1-D3 (Fig. a)—(c)):
Mean accuracy and standard deviation per method on the syn-products networks.

Design h 0.00 0.10 0.20 0.30 0.40 0.50

DI1-D3 [S0/K2] H,GCN-1 82.0640.24 78.39+1.56 79.37+0.21 81.10+0.22 84.25+1.08 88.15+0.28
D3 H;GCN-2 83.37+0.38 80.03+0.84 81.09+0.41 82.79+0.49 86.73+0.66 90.75+0.43
D1 [NSO] N7 + N2 52.7240.13 41.65+0.18 46.114+0.86 58.16+0.79 71.10+0.54 82.19+0.40
Dl [NS1] Only Ny 40.35+0.58 35.17+0.92 40.35+0.92 52.45+0.85 65.62+0.56 76.05+0.38
D1, D2 [S1/N2] w/o N, 79.6540.27 76.0840.76 76.46+0.21 77.29+0.46 79.81+0.88 83.56+0.22
D2 [N1] w/o N, 72.2740.55 73.05+1.23 75.8140.67 76.83+0.72 80.49+0.72 82.9140.44
D2 [NO] w/o 0-hop neighb. (ego) 63.55+0.46 46.73+0.42 42.29+0.55 48.20+0.59 61.22+0.35 75.1540.27
D3 [K0] No Round-0 75.634+0.19 61.99+0.57 56.36+0.56 61.27+0.71 73.33+0.88 84.51+0.50
D3 [K1] No Round-1 75.7540.90 75.6540.73 79.254+0.18 81.19+0.33 84.64+0.35 88.46+0.60
D3 [R2] Only Round-2 73.1141.01 62.474+1.35 59.9940.43 64.37+1.14 75.43+0.70 86.0240.79

§ Non-linear H, GCN-2 (§ 82.23+0.25 78.78+1.04 80.47+0.15 82.08+0.10 85.89+0.53 89.78+0.11

Design h 0.60 0.70 0.80 0.90 0.99 1.00

D1, D3 [S0/K2] H,GCN-1 92.39+0.06 95.69+0.19 98.09+0.23 99.63+0.13 99.88+0.06 99.93+0.01
D3 H>GCN-2 94.81+0.27 97.67+0.18 99.134+0.05 99.89+0.08 99.98+0.00 99.99+0.01
D1 [NSO] N; + No 90.39+0.54 95.25+0.06 98.2740.13 99.69+0.03 99.98+0.02 100.00+0.00
D1 [NS1] Only Ny 84.4140.44 90.15+0.27 95.2140.3¢4 97.71+0.06 99.56+0.11 99.49+0.11
D1,D2 [S1/N2] w/o N, 87.39+0.33 91.08+0.50 94.36+0.32 97.01+0.40 98.79+0.23 98.71+0.15
D2 [N1] w/o N 87.2440.21 92.5540.50 95.64+0.19 98.71+0.13 99.73+0.12 99.83+0.06
D2 [NO] w/o 0-hop neighb. (ego) 86.08+0.58 93.03+0.20 97.45+0.09 99.45+0.06 99.98+0.02 99.98+0.03
D3 [KO] No Round-0 92.42+0.13 96.81+0.11 99.0940.27 99.89+0.01 100.00+0.00 100.00+0.00
D3 [K1] No Round-1 93.0540.23 97.17+0.36 99.06+0.09 99.89+0.08 99.97+0.02 99.97+0.01
D3 [R2] Only Round-2 93.79+0.28 97.88+0.18 99.38+0.12 99.89+0.05 100.00+0.00 100.00+0.00
§ Non-linear H,GCN-2 93.68+0.50 96.73+0.23 98.5540.06 99.74+0.05 99.96+0.04 99.93+0.03

29

H Real Datasets: Details

Datasets In our experiments, we use the following real-world datasets with varying levels of
homophily ratios 4. Some network statistics are given in Table 5]

» Texas, Wisconsin and Cornell are graphs representing links between web pages of the corre-
sponding universities, originally collected by the CMU WebKB project. We used the preprocessed
version in [26]]. In these networks, nodes are web pages, which are classified into 5 categories:
course, faculty, student, project, staff.

* Squirrel and Chameleon are subgraphs of web pages in Wikipedia discussing the corresponding
topics, collected by [29]]. For the classification task, we utilize the class labels generated by [26]],
where the nodes are categorized into 5 classes based on the amount of their average traffic.

» Actor is a graph representing actor co-occurrence in Wikipedia pages, processed by [26] based on
the film-director-actor-writer network in [35]]. We also use the class labels generated by [26].

* Cora, Pubmed and Citeseer are citation graphs originally introduced in [30,[22]], which are among
the most widely used benchmarks for semi-supervised node classification [31}[13]]. Each node is
assigned a class label based on the research field. These datasets use a bag of words representation
as the feature vector for each node.

* Cora Full is an extended version of Cora, introduced in [4}|31], which contain more papers and
research fields than Cora. This dataset also uses a bag of words representation as the feature vector
for each node.

Data Limitations As discussed in [31} [13], Cora, Pubmed and Citeseer are widely adopted as
benchmarks for semi-supervised node classification tasks; however, all these benchmark graphs
display strong homophily, with edge homophily ratio h > 0.7. As a result, the wide adaptation
of these benchmarks have masked the limitations of the homophily assumption in many existing
GNN models. Open Graph Benchmark is a recent effort of proposing more challenging, realistic
benchmarks with improved data quality comparing to the existing benchmarks [13]. However, with
respect to homophily, we found that the proposed OGB datasets display homophily A > 0.5.

In our synthetic experiments (§ [G), we used ogbn-products from this effort to generate higher
quality synthetic benchmarks while varying the homophily ratio A. In our experiments on real datasets,
we go beyond the typically-used benchmarks (Cora, Pubmed, Citeseer) and consider benchmarks with
strong heterophily (Table[5). That said, these datasets also have limitations, including relatively small
sizes (e.g., WebKB benchmarks), artificial classes (e.g., Squirrel and Chameleon have class labels
based on ranking of page traffic), or unusual network structure (e.g., Squirrel and Chameleon are
dense, with many nodes sharing the same neighbors — cf. §[5.2). We hope that this paper will
encourage future work on more diverse datasets with different levels of homophily, and lead to higher
quality datasets for benchmarking GNN models in the heterophily settings.

30

