
We would like to thank all the reviewers for their thoughtful comments. We will respond to each reviewer’s questions1

individually and incorporate the advice on formatting, notations, and references in an updated version of our manuscript.2

[R1] Explanation of the transformation. Itô's Lemma shows our model can be used to construct a broad range of3

Itô diffusion processes with tractable finite-dimensional distributions (FDD). To show the correctness of Eqs. (5-7),4

it suffices to show the FDD on Rn of the stochastic process Xτ defined by Eq.(6) is the same as the distribution5

obtained by transforming the FDD of the Wiener process with the density of Eq.(7). We present a formal argument6

based on measure theory and a proof sketch: consider the classical Wiener space (Ω,Σ), where Ω = C([0,+∞),R),7

the set of continuous functions from [0,+∞) to R, and Σ is the σ-algebra generated by all the cylinder sets of8

C([0,+∞),R).1 We can equip this space with a probability measure (distribution) Q to get a probability space9

(Ω,Σ, Q) for continuous-time stochastic processes. Given a finite subset {τ1, τ2, ..., τn} ⊂ (0,+∞), define the10

projection π{τ1,...,τn} : (Ω,Σ, Q) −→ (Rn,B(Rn)) to be π{τ1,...,τn}(ω) = (ω(τ1), ..., ω(τn)), where B(·) is the11

Borel σ-algebra. We will drop the index and simply use π to denote projection from now on. Projection is a measurable12

mapping. The finite-dimensional distribution (FDD) of a process is defined to be the pushforward measure induced13

by π, that is Q ◦π−1(A) = Q({ω : (ω(τ1), ..., ω(τ2)) ∈ A}), A ∈ B(Rn). Let P denote the unique measure of Wiener14

process Wτ defined on the classical Wiener space. The following proposition and theorem will serve our purpose:15

Proposition 1 The mapping from (Ω,Σ, P ) to (Ω,Σ) defined by Xτ = Fθ(Wτ , τ) is measurable and therefore16

induces a pushforward measure P ◦ F−1θ .17
Theorem 1 Given a finite subset {τ1, τ2, ..., τn} ⊂ (0,+∞), the FDD of Xτ is the same as the distribution of18

(Fθ(Wτ1 , τ1), ..., Fθ(Wτn , τn)), where (Wτ1 , ...,Wτn) is a n-dimensional random variable with FDD of Wτ .19

The distributions, or (pushforward) measures, of (Xτ1 , ...,Xτn) and (Fθ(Wτ1 , τ1), ..., Fθ(Wτn , τn)) are induced by20

two mappings from (Ω,Σ, P ) to (Rn,B(Rn)) respectively: a) π ◦ Fθ and b) Fθ ◦ π, where π is the projection onto21

{τ1, τ2, ..., τn}. To show the two distributions on (Rn,B(Rn)) are equal, it suffices to check that they assign the same22

measure to every Borel set of Rn. This is true because the preimages of every Borel set under the two mappings are23

identical. The arguments above can be generalized to Ω = C([0,+∞),Rn).24

[R1] Efficiency of neural ODE. We would like to clarify that our main contribution is a continuous-time stochastic25

process model, of which the normalizing flow (NF) is just one component. We use a continuous normalizing flow26

(neural ODE) primarily because of its free-form Jacobian matrix property, flexibility w.r.t. transformations, and model27

architecture. It also shows competitive performance on low-dimensional data compared with GLOW and autoregressive28

flows. Since our experiments focus on low-dimensional data, the time cost is not a major bottleneck. Other types of29

data may require a different choice of flow, which is possible and within the specifications of the proposed framework.30

[R1] Ablation study of sampling intervals. It is worth noting that the observation time intervals are different samples31

from the same Poisson process for each sequence. We would like to make a minor correction on data-preprocessing32

details: for real-world data we use λ = 2 rather than λ = 0.5. We present the requested ablation study results below:
Table 1: Ablation Study on Time Interval for Real-World Data

Model Mujoco-Hopper BAQD PTBDB

λtest = 1 λtest = 5 λtest = 1 λtest = 5 λtest = 1 λtest = 5

Latent ODE 25.082± 0.011 24.599± 0.004 2.948± 0.006 2.686± 0.006 −0.633± 0.006 −0.892± 0.009
VRNN 10.553± 0.010 8.543± 0.008 0.044± 0.007 −1.016± 0.001 −1.552± 0.011 −2.545± 0.005
CTFP −5.860± 0.013 −20.530± 0.003 −0.890± 0.001 −3.595± 0.001 −0.982± 0.041 −1.793± 0.015
Latent CTFP −28.272± 0.043 −32.388± 0.057 −7.212± 0.064 −6.157± 0.035 −1.549± 0.009 −2.525± 0.007
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[R2] Independent normalizing flow transformation. While there is similarity between the graphical model represen-34

tations of our approach and state-space models, we would like to stress the fundamental differences between them:35

CTFP directly models a distribution of continuous functions from the time axis to an observation space, or equivalently36

a stochastic process. It takes the evaluations of the functions at an arbitrary given time-grid to be the distribution of37

observations and can directly compute its density. The CTFP mapping is injective and does not rely on an emission38

process with observation noise. We condition each transformation only on the time stamp τ rather than previous39

observations to enforce marginalization consistency of the stochastic process: given the finite-dimensional distribution40

(FDD) of (Xτ1 , ...,Xτi , ...,Xτn) for a stochastic process Xτ , the distribution obtained by marginalizing over one of41

the dimensions, Xτi , must be the same as the FDD of (Xτ1 , ...,Xτi−1
,Xτi+1

, ...,Xτn). Our experiments show that42

our models outperform VRNN, which conditions emission and transition on all previous observations and is arguably a43

more powerful filtering-based model than the extended Kalman filter. We agree with the reviewer’s comment on Eq.(12):44

the latent variable z could be interpreted as containing history information to relax the Markov property of CTFP.45

[R3] Importance of continuity. We thank the reviewer for recognizing continuity as a unique property of CTFP. Its46

importance is shown from two aspects in our work: our models show better performance than other models when47

evaluated using denser observation intervals (larger λ) on most of the datasets. This is partially due to our model’s48

continuity as the dependence between neighboring observations is stronger with denser observations. Moreover, the49

qualitative examples in Fig. 3(c) show that our models, which can generate continuous trajectories, are better for50

interpolation than non-continuous models.51

1We refer the reviewer to Chapter 2 of Brownian Motion, Martingales, and Stochastic Calculus by Jean François Le Gall for more details.


