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A Finite-Dimensional Distribution of CTFP

Equation 7 in Section 4 is the log density of the distribution obtained by applying the normalizing
flow models to the finite-dimensional distribution of Wiener process on a given time grid. A natural
question that would arise is why the distribution described by Equation 7 necessarily matches
the finite-dimensional distribution of X, = Fp(W,,7). In other words, it is left to close the
gap between the distributions of samples obtained by two different ways to justify Equation 7:
(1) first getting a sample path of X, by applying the transformation defined by Fy to a sample
of W.. and then obtaining the finite-dimensional observation of X on the time grid; (2) first
obtaining the finite-dimensional sample of W and applying the normalizing flows to this finite-
dimensional distribution. To justify the finite-dimensional distribution of CTFP, we choose to work
with the canonical Wiener space (2, %) equipped with the unique Wiener measure gy where
Q = C([0, +00), R?) is the set of continuous functions from [0, +-00) to R, ¥ is the Borel o-algebra
generated by all the cylinder sets of C([0, +00), R?), and W, (w) = w(7) for w € Q. We refer
the reader to Chapter 2 of [5]] for more details. Given a time grid 0 < 73 < 79 < --- < Ty, the
distribution of observations of Wiener process on this discrete time grid is called the finite-dimensional
distribution of W, It is a push-forward measure on (R*"  B(R?*")) induced by the projection
mapping mr, ry....m, ¢ (€,38) = ((R¥", B(R?™))) on this grid where B(-) denotes the Borel
o-algebra. Therefore, for each Borel (measurable) set B of RI*7_ the finite-dimensional distribution
of Bis pw o 1(B) = pw ({w|(W,, (w)...W,, (w)) € B}). We drop the subscript of 7 for
the simplicity of notation. We base the justification on the following two propositions.

Proposition 1. Let Fy(-,-) be defined as Equation 8 and 9 in Section 4.2. The mapping from
(2, pw) 1o (%) defined by w(t) — Fo(w(T),T) is measurable and therefore induces a

pushforward measure pyy o Fy L

Proof. As Fy is continuous in both w and 7, it is easy to show Fy(w(7),7) is also continuous in
7 for each w continuous in 7. As Fy(-, 7) is invertible for each 7, Fy(-,7) is an homeomorphsim
between RY and R?. Therefore, the pre-image of each Borel set of R? under Fy(-, 7) for each 7 is
also Borel. As a result, the pre-image of each cylinder set of C([0, +00), R%) under the mapping
defined by Fy(-, ) is also a cylinder set, which is enough to show the mapping is measurable. O

This proposition shows X is a stochastic process also defined in the space of continuous functions as
Wiener process. It provides a solid basis to for defining finite-dimensional distribution of X, on R%*™
in a similar ways as Wiener process using projection. The two sampling methods mentioned above
can be characterized by two different mappings from (2, ¥, pw) to (R¥", B(R?*"™)): (1) applying
transformation defined by Fj to a function in C'([0, +00), R¢) and then applying the projection 7 to
the transformed function given a time grid; (2) applying the projection to a continuous function on a
time grid and applying the transformation defined by Fj(-, 7) for each 7 individually. We can check
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the pushforward measures induced by the two mappings agree on every Borel set of R?*™ as their
pre-images are the same in (2, X, pw ). Therefore we have the following proposition:

Proposition 2. Given a finite subset {11, T2, ..., Tn} C (0, +00), the finite-dimensional distribution
of X is the same as the distribution of (Fo(W.,,11), ..., Fg(W, , 7)), where (W, ,... W, )isa

n

n X d-dimensional random variable with finite-dimensional distribution of W.

Proof. Tt suffices to check that given the fixed time grid, for each Borel set B C
R¥*"  the preimage of B is the same under the two mappings. They are both
{w|(F9(WTl (w)a 71)7F9(W‘Fz(w)a 7-2)7 s ’FQ(WM(W)7 Tn)) € B} O

B Experiment Setup and Model Architecture Details

We describe the details on synthetic dataset generation, real-world dataset pre-processing, model
architecture as well as training and evaluation settings in this section.

B.1 Synthetic Dataset Details

For the geometric Brownian motion (GBM), we sample 10000 trajectories from a GBM with the
parameters of 4 = 0.2 and a variance of o = 0.5 in the interval of [0, 30]. The timestamps of the
observations are sampled from a homogeneous Poisson point process with an intensity of A¢pain = 2.
We evaluate the model on the observations timestamps sampled from two homogeneous Poisson
processes separately with intensity values of Aot = 2 and A¢est = 20.

For the Ornstein—Uhlenbeck (OU) process, the parameters of the process we sample trajectories
from are 0 = 2,4 = 1, and 0 = 10. We also sample 10000 trajectories and use the same set of
observation intensity values, Atyain and A¢est, to sample observation timestamps from homogeneous
Poisson processes for training and test.

For the mixture of OU processes (MOU), we sample 5000 sequences from each of two different
OU processes and mix them to obtain 10000 sequences. One OU process has the parameters of
0 =2, =1, and 0 = 10 and the observation timestamps are sampled from a homogeneous Poisson
process with A¢ain = 2. The other OU process has the parameters of § = 1.0, u = 2.0, and 0 = 5.0
with observation timestamps sampled with A¢; .5, = 20.

For the 10000 trajectories of each dataset, we use 7000 trajectories for training and 1000 trajectories
for validation. We test the model on 2000 trajectories for each value of Aies. To test the model with
Atest = 20 on GBM and OU process, we also use 2000 sequences.

B.2 Real-World Dataset Details

As mentioned in Section 5.2 of the paper, we compare our models against the baselines on
three datasets: Mujoco-Hopper, Beijing Air-Quality dataset (BAQD), and PTB Diagnostic
Database(PTBDB). The three datasets can be downloaded using the following links:

e http://www.cs.toronto.edu/"rtqichen/datasets/HopperPhysics/training.
pt
e https://www.kaggle.com/shayanfazeli/heartbeat/download

e https://archive.ics.uci.edu/ml/datasets/Beijing+Multi-Site+
Air-Quality+Data

We pad all sequences into the same length for each dataset. The sequence length of the Mujoco-
Hopper dataset is 200 and the sequence length of BAQD is 168. The maximum sequence length
in the PTBDB dataset is 650. We rescale the indices of sequences to real numbers in the interval
of [0, 120] and take the rescaled values as observation timestamps for all datasets. To make the
sequences asynchronous or irregularly-sampled, we sample observation timestamps {7; }?_; from a
homogeneous Poisson process with an intensity of 2 that is independent of the data. For each sampled
timestamp, the value of the closest observation is taken as its corresponding value. The timestamps
of all sampled sequences are shifted by a value of 0.2 since W = 0 deterministically for the Wiener
process and there’s no variance for the CTFP model’s prediction at 7 = 0.
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B.3 Model Architecture Details

To ensure a fair comparison, we use the same values for hyper-parameters including the latent variable
and hidden state dimensions across all models. Likewise, we keep the underlying architectures as
similar as possible and use the same experimental protocol across all models.

For CTFP and Latent CTFP, we use a one-block augmented neural ODE module that maps the base
process to the observation process. For the augmented neural ODE model, we use an MLP model
consisting of 4 hidden layers of size 32—-64—-64-32 for the model in Equation 8 and Equation 12.
In practice, the implementation of g in the two equations is optional and its representation power
can be fully incorporated into f. This architecture is used for both synthetic and real-world datasets.
For the latent CTFP and latent ODE models appearing in Section 5, we use the ODE-RNN model
as the recognition network. For synthetic datasets, the ODE-RNN model consists of a one-layer
GRU cell with a hidden dimension of 20 (the rec-dims parameter in its original implementation)
and a one-block neural ODE module that has a single hidden layer of size 100, and it outputs a
10-dimensional latent variable. The same architecture is used by both latent ODE and latent CTFP
models. For real-world datasets, the ODE-RNN architecture uses a hidden state of dimension 20
in the GRU cell and an MLP with a 128-dimensional hidden layer in the neural ODE module. The
ODE-RNN model produces a 64-dimensional latent variable. For the generation network of the latent
ODE (V2) model, we use an ODE function with one hidden layer of size 100 for synthetic datasets
and 128 for real-world datasets. The decoder network has 4 hidden layers of size 32—-64—64-32; it
maps a latent trajectory to outputs of Gaussian distributions at different time steps.

The VRNN model is implemented using a GRU network. The hidden state of the VRNN models
is 20-dimensional for synthetic and real-world datasets. The dimension of the latent variable is 64
for real-word datasets and 10 for synthetic datasets. We use an MLP of 4 hidden layers of size
32-64—-64-32 for the decoder network, an MLP with one hidden layer that has the same dimension
as the hidden state for the prior proposal network, and an MLP with two hidden layers for the
posterior proposal network. For synthetic data sampled from Geometric Brownian Motion, we apply
an exponential function to the samples of all models. Therefore the distribution precited by latent
ODE and VRNN at each timestamp is a log-normal distribution.

B.4 Training and Evaluation Settings

For synthetic data, we train all models using the IWAE bound with 3 samples and a flat learning rate
of 5 x 10~* for all models. We also consider models trained with or without the aggressive training
scheme proposed by He et al. [4] for latent ODE and latent CTFP. We choose the best-performing
model among the ones trained with or without the aggressive scheme based IWAE bound, estimated
with 25 samples on the validation set for evaluation. The batch size is 100 for CTFP models and
25 for all the other models. For experiments on real-world datasets, we did a hyper-parameter
search on learning rates over two values of 5 x 10~% and 10, and whether using the aggressive
training schemes for latent CTFP and latent ODE models. We report the evaluation results of the
best-performing model based on IWAE bound estimated with 125 samples.

C Ablation Study Results

C.1 Additional Experiment Results on Real-world Datasets
We provide additional experiment results on real-world datasets using different intensity value As of 1

and 5 to sample observation processes in Table 1 below.

Table 1: Ablation Study on Time Interval for Real-World Data

Negative Log-Likelihood

Model N
Mujoco-Hopper BAQD PTBDB

Atest = 1 Atest = 5 Atest = 1 Atest = 5 Atest = 1 Atest =5

Latent ODE 25.082 4+ 0.011 24.599 + 0.004 2.948 £ 0.006 2.686 £ 0.006 —0.633 £ 0.006 —0.892 £ 0.009
VRNN 10.553 £ 0.010 8.543 £ 0.008 0.044 £ 0.007 —1.016 £+ 0.001 —1.552 + 0.011 —2.545 + 0.005
CTFP —10.152 + 0.084 —23.241 £+ 0.057 —1.255+ 0.022 —3.784 +£0.035 —1.028 £ 0.028 —1.824 £+ 0.014
Latent CTFP—30.469 + 0.079 —33.412 + 0.035 —7.276 + 0.061 —6.226 + 0.016 —1.552 + 0.010 —2.533 + 0.008




Table 2: Comparison between CTFP, CTFP-IID-Gaussian, latent CTFP, and latent CTFP-IID-
Gaussian on synthetic datasets. We report NLL per observation.

GBM ou M-OU

Model

Atest =2 Atest =20 Atest =2 Atest = 20 Agest = (2,20)
Latent ODE [6] 3.826 5.935 3.066 3.027 2.690
CTFP-IID-Gaussian 4.952 4.094 3.025 3.024 2.716
Latent CTFP-IID-Gaussian 3.945 5.072 3.017 3.000 2.689
CTFP (ours) 3.107 1.929 2.902 1.941 1.408
Latent CTFP (ours) 3.107 1.930 2.902 1.939 1.392
Ground Truth 3.106 1.928 2722 1.888 1.379

Table 3: Comparison Between CTFP, CTFP-IID-Gaussian, latent CTFP, and latent CTFP-IID-
Gaussian on real-world datasets. We report NLL per observation.

Model Mujoco-Hopper [6] BAQD [1]] PTBDB [7]
Latent ODE [6] 24.775 4+ 0.010 2.789 + 0.011 —0.818 £0.009
CTFP-IID-Gaussian 22.023 +0.010 3.398 £+ 0.006 —0.375 £ 0.003
Latent CTFP-IID-Gaussian 17.397 £ 0.007 1.471 £ 0.005 —1.436 £ 0.005
CTFP (ours) —16.249 £+ 0.034 —2.361 £ 0.020 —1.324 £0.028
Latent CTFP (ours) —31.397+0.063 —6.894+0.046 —1.999+0.010

C.2 LIL.D. Gaussian as Base Process

In this experiment, we replace the base Wiener process with I.I.D Gaussian random variables and
keep the other components of the models unchanged. This model and its latent variant are named
CTFP-IID-Gaussian and latent CTFP-IID-Gaussian. As a result, the trajectories sampled from CTFP-
IID-Gaussian are not continuous and we use this experiment to study the continuous property of
models and its impact on modeling irregular time series data with continuous dynamics. The results
are presented in Table[2]and Table 3]

The results show that CTFP consistently outperforms CTFP-IID-Gaussian, and latent CTFP outper-
forms latent CTFP-IID-Gaussian. The results corroborate our hypothesis that the superior perfor-
mance of CTFP models can be partially attributed to the continuous property of the model. Moreover,
latent CTFP-IID-Gaussian shows similar but slightly better performance than latent ODE models.
The results comply with our hypothesis as the models are very similar and both models have no
notion of continuity in the decoder. We believe the performance gain of latent CTFP-IID-Gaussian
comes from the use of (dynamic) normalizing flow which is more flexible than Gaussian distributions
used by latent ODE.

C.3 CTFP-RealNVP

In this experiment, we replace the continuous normalizing flow in CTFP model with another popular
choice of normalizing flow model, ReaINVP [3]]. This is variant of CTFP is named CTFP-RealNVP
and its latent version is called latent CTFP-RealNVP. Note that the trajectories sampled from CTFP-
RealNVP model are still continuous. We evaluate CTFP-RealNVP and latent CTFP-RealNVP models
on datasets with high dimensional data, Mujoco-Hopper, and BAQD. The results are shown in Table[d]

Table 4: Comparison between CTFP, CTFP-RealNVP, and their latent variants on Mujoco-Hopper
and BAQD datasets. We report NLL per observation.

Model Mujoco BAQD
CTFP-RealNVP —23.061 £0.000  —5.099 £ 0.002
Latent CTFP-RealNVP —23.602 £ 0.001 —5.109 £ 0.005
CTFP —16.249£0.034  —2.361 +0.020
Latent CTFP —31.397+£0.063 —6.894+0.046

The table indicates that CTFP-RealNVP outperforms CTFP. However, when incorporating the latent
variable, the latent CTFP-RealNVP performs significantly worse than latent CTFP. The worse



performance might be because RealNVP cannot make full use of the information in the latent variable
due to its structural constraints as we discussed in Section 4.2.

D Additional Details for Latent ODE Models on Mujoco-Hooper Data

The original latent ODE paper focuses on point estimation and uses the mean squared error as the
performance metric [6]. When applied to our problem setting and evaluated using the log-likelihood,
the model performs unsatisfactorily. In Table[3] the first row shows the negative log-likelihood on the
Mujoco-Hopper dataset. The inferior NLL of the original latent ODE is potentially caused by the use
a fixed output variance of 10~%, which magnifies even a small reconstruction error.

To mitigate this issue, we propose two modified versions of the latent ODE model. For the first
version (V1), given a pretrained (original) latent ODE model, we do a logarithmic scale search for the
output variance and find the value that gives the best performance on the validation set. The second
version (V2) uses an MLP to predict the output mean and variance. Both modified versions have much
better performance than the original model, as shown in Table [5] rows 2-3. It also shows that the
second version of the latent ODE model (V2) outperforms the first one (V1) on the Mujoco-Hopper
dataset. Therefore, we use the second version (V2) for all the experiments in the main text.

Table 5: Comparison of different version of latent ODE models on Mujoco-Hooper Datasets.

Model NLL
Latent ODE (original) 4 x 107 £9 x 10°
Latent ODE (V1) 45.874 + 0.001
Latent ODE (V2) 24.775 + 0.010
VRNN 9.113 £0.018
CTFP —16.249 £ 0.034
Latent CTFP —31.397 +0.063

E Qualitative Sample for VRNN Model

We sample trajectories from the VRNN model [2] trained on Geometric Brownian Motion (GBM)
by running the model on a dense time grid and show the trajectories in Figure [T} We compare the
trajectories sampled from the model with trajectories sampled from GBM. As we can see, the sampled
trajectories from VRNN are not continuous in time.

(a) VRNN (b) Ground Truth

Figure 1: Sample trajectories and marginal density estimation by VRNN (a). We compare the
results with sample trajectories and marginal density with ground truth (b). In addition to the
sample trajectories (red) and the marginal density (blue), we also show the sample-based estimates
(closed-form for ground truth) of the inter-quartile range (dark red) and mean (brown) of the marginal
density.

We also use VRNN to estimate the marginal density of X for each 7 € (0, 5] and show the results
in Figure[T] It is not straightforward to use VRNN model for marginal density estimation. For each



timestamp 7 € (0, 5], we get the marginal density of X, by running VRNN on a time grid with two
timestamps, O and 7: at the first step, the input to VRNN model is £y = 1 and we can get prior
distributions of the latent variable Z,. Note that a sampled trajectory from GBM is always 1 when
7 = 0. Conditioned on the sampled latent codes z( and z,, VRNN proposes p(x,|xo, 2-, 2o) at
the second step. We average the conditional density over 125 samples of Z and Z, to estimate the
marginal density.

The marginal density estimated using a time grid with two timestamps is not consistent with the
trajectories sampled on a different dense time grid. The results indicate that the choice of time grid
has a great impact on the distribution modeled by VRNN and the distributions modeled by VRNN on
different time grids can be inconsistent. In contrast, our proposed CTFP models do not have such
problems.
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