
We thank all the reviewers for their feedback, their apt comments and questions. We will follow the comments of1

Reviewer 2 and 3 to ameliorate the write up and the suggestions of Reviewer 1 and 4 for experimental results.2

Reviewer 1: The reviewer’s comment on the practical efficiency of the ellipsoid method is a valid point. Unfortunately3

circumventing the ellipsoid method for the GMSSC seems a very hard task even for offline algorithms. The reason is4

that (to the best of our knowledge) there is no linear relaxation of GMSSC with polynomial description and constant5

integrality gap. However, for the important special case of Min-Sum Set Cover the subgradient can be computed via6

a quadratic-time algorithm. For the sake of simpler exposition we did not present it in the original draft but we will7

definitely add it. We have efficiently implemented in C++ both OPDG in doubly stochastic matrices and randomized8

/deterministic roundings. Our first experimental results (also requested by Rev. 4) reveal that the regret becomes very9

small quickly given random requests, while the deterministic rounding performs extremely better than its theoretical10

guarantees and even outperforms the randomized rounding. Finally concerning the reviewer’s question on reducing the11

n5.5 of the additive term, we conjecture that this is indeed possible (may be with some increase in the regret bound).12

Actually our experimental findings indicate that the right additive term is n2. However, our current analysis is tight and13

novel ideas would be needed.14

Reviewer 2: The reviewer’s point on our novelty concerns the randomized rounding scheme (Algorithm 3) that comes15

from [36] and possibly Algorithm 4 that is based on the previous one. We just want to mention that a key contribution16

of the paper is combining a modification of the configuration LP in [30] (that differs form the LP in [36]) with the17

rounding scheme of [36] to obtain constant regret algorithms. So, we bring together the right ideas and techniques from18

previous work, after properly adapting them. Moreover, our deterministic rounding is novel. We find the reviewers19

question on optimizing the rounding in [36] for other special case of K(R) very interesting even for the offline case.20

Addressing it is, however, beyond our current scope, since our analysis concluding in Lemma 9 crucially uses the fact21

that K(R) = 1.22

Reviewer 3: In the definition of the fractional access cost, the authors assume a fixed accuracy parameter, ε,23

and ignore dependence of FACR(A) on ε. What is the dependence on ε? The fractional access cost, FACR(A),24

can be defined for any value ε > 0. The smaller the choice of ε is the better the regret bounds are (2(1 + ε)r, 28(1 + ε)25

and 11.713(1 + ε)) and the greater the additive term becomes O
(
n5.5

ε
√
t

)
. What is the fractional access cost linear26

program? Why is it exponential in number of constraints? Is this the only possible formulation? It is the linear27

program in Definition 2 which has exponential size since the number of different configurations is exponential in the28

number of elements. As already mentioned, we are not aware of any linear relaxation for GMSSC with polynomial29

description and constant integrality gap. Where does the n4/ε term come from? The term n4/ε plays two important30

roles: i) it ensures an upper bound on the norm of the subgradients (which is necessary for the OPGD to run), and31

ii) it associates the fractional access cost with the value of the (different) linear relaxation used in [6]. Why is there32

a 5.03/α in the conversion of doubly stochastic matrices to probability distribution over permutations? The33

selection of 5.03 is so as to minimize a parametric upper bound (see [36]). Why doesn’t any conversion that respects34

the marginals suffice? Unfortunately, such intuitive rounding schemes do not always work. In fact there are cases35

where a probability distribution respecting the marginals of the doubly stochastic matrix leads to arbitrarily higher36

expected accessing cost than the fractional access cost of the doubly stochastic matrix. For example, for the matrix37

A below, selecting with probability 1/2 the permutation {1, 2, 3, 4, . . . , n − 2, n − 1, n} and with probability 1/238

the permutation {n − 1, n, 3, 4, . . . , n − 2, 1, 2}, respects the marginals. Let the request R = {1, 2} with covering39

requirements K(R) = 1. Its expected access cost is Θ(n) while its fractional access cost under A is Θ(1). The40

algorithms presented here give for the special case of |Rt| = 1? The exact same bounds since they do not take41

into account the cardinality of the sets. However it is easy to design 2-regret algorithms for the special case where42

|Rt| = 1. Can the relaxation of the GMSSC objective over the doubly stochastic matrices improve some known43

approximation bounds for the minimum linear ordering problem or its special cases? The relaxation of the44

GMSSC cannot help in the more general linear ordering problem. The reason is that the dual cannot be solved in45

polynomial time, since the separation oracle crucially depends on the specific structure of GMSSC.

A =
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1/2 0 0 · · · 0 1/2 0
0 1/2 0 · · · 0 0 1/2
0 0 1 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 1 0 0
1/2 0 0 · · · 0 1/2 0
0 1/2 0 · · · 0 0 1/2
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