
Supplementary Material
Efficient Online Learning of Optimal Rankings:
Dimensionality Reduction via Gradient Descent

A Omitted Proofs of Section 3

Proof of Lemma 1. To simplify notation, let λ∗(A), λ∗ej(A) denote the values of the variables
λ∗(A), λ∗(A)ej in the optimal solution of the dual program written with respect to doubly stochastic
matrix A ∈ DS. Respectively λ∗(B), λ∗ej(B) for the doubly stochastic matrix B ∈ DS. By strong
duality, we have that

FACR(A) = λ∗(A) +
∑
e∈R

n∑
j=1

Aej · λ∗ej(A) and FACR(B) = λ∗(B) +
∑
e∈R

n∑
j=1

Bej · λ∗ej(B)

Since matrices A and B only affect the objective function of the dual and not its constraints, the
solution λ∗(A), λ∗ej(A) is a feasible solution for the dual program written according to matrix B. By
the optimality of λ∗(B), λ∗ej(B) we get,

FACR(B) = λ∗(B) +
∑
e∈R

n∑
j=1

Bej · λ∗ej(B) ≥ λ∗(A) +
∑
e∈R

n∑
j=1

Bej · λ∗ej(A)

As a result, we get that FACR(B)− FACR(A) ≥
∑
e∈R

∑n
j=1 λ

∗
ej(A) · (Bej −Aej) implying that

the vector g containing the λ∗ej(A)’s, is a subgradient of FACR(·) at point A, i.e., g ∈ ∂FACR(A).
The inequality ‖g‖2 ≤ n5/ε directly follows by the fact that |λ∗(A)ej | ≤ n4/ε.

Separation Oracle for the LP in Equation 4: The dual linear program of (4) is differs from the LPdual
in [30, Sec. 2.2] only in the constraints |λej | ≤ n4/ε, which are only present in (4). [30, Sec. 2.2]
present a separation oracle for their LPdual (i.e., for (4), without the constraints |λej | ≤ n4/ε), which
is based on formulating and solving a min-cost flow problem. Since, in case of (4), the we have only
n2 additional constraints |λej | ≤ n4/ε, we can first check whether these constraints are satisfied by
the current solution and then run the separation oracle of [30].

B Omitted Proofs of Section 4

B.1 Proof of Theorem 3

In Algorithm 3, we present the online randomized rounding scheme that combined with Projected
Gradient Descent (Algorithm 1) produces a polynomial-time randomized online learning algorithm
for GMSSC with (roughly) 28 regret. The randomized rounding scheme described in Algorithm 3
was introduced by [36] to provide a 28-approximation algorithm for the (offline) GMSSC. [36]
proved that this randomized rounding scheme produces a random permutation with access cost at
most 28 times greater than the optimal fractional value of the LP relaxation of GMSSC introduced in
[6]. We remark that this LP relaxation cannot be translated to an equivalent relaxed online learning
problem as the one we formulated using the fractional access cost of Definition 2. The goal of
the section is to prove Theorem 3 which extends the result of [36] to the fractional access cost of
Definition 2.

13

Algorithm 3 Converting Doubly Stochastic Matrices to Probability Distributions over Permutations
Input: A doubly stochastic matrix A ∈ DS.
Output: A probability distribution over permutations, PA ∼ π ∈ [n!]

1: Randomly pick α ∈ (0, 1) with probability density function f(α) = 2α.
2: Set B ← (5.03/α) ·A
3: for all elements e = 1 to n do
4: for all positions j = 1 to bn/2c do
5: Be,2j ← Be,2j +Be,j .
6: end for
7: end for
8: for all elements e = 1 to n do
9: Pick αe uniformly at random in [0, 1].

10: Find the effecive index iαe ← arg maxi{i :
∑i−1
j=1Bej < αe}.

11: end for
12: Output the elements according to the order of ie’s.

Definition 3. For a request R with covering requirements K(R), we define the cost SWR : DS 7→ R
on the doubly stochastic matrices as follows: For any doubly stochastic matrix A ∈ DS, the value
SWR(A) equals the value of the following linear program,

minimize
n∑
i=1

(1− zi)

subject to (K(R)− |M |) · zi ≤
i−1∑
j=1

∑
e∈R\M

Aej for all M ⊆ R

zi ∈ [0, 1] for all 1 ≤ i ≤ n
Lemma 2. [36] For any doubly stochastic matrix A ∈ DS,

E
π∼PA

[AccessCost(π,R)] ≤ 28 · SWR(A)

where PA is the probability distribution over the permutation produced by Algorithm 3 when the
matrix A was given as input.

In Lemma 3 we associate the cost SWR(·) of Definition 3 with the fractional access cost FACR(·)
of Definition 2. Then Theorem 3 directly follows by Lemma 2 and Lemma 3.
Lemma 3. For any doubly stochastic matrix A ∈ DS,

SWR(A) ≤ (1 + ε) · FACR(A)

where ε > 0 is the parameter of the linear program (FLP) in Definition 2.

Proof. Starting from the optimal solution yF of the linear program (FLP) of FACR(A) in Defi-
nition 2, we construct a feasible solution for the linear program of SWR(A) of Definition 3 with
cost approximately bounded by (1 + ε) · FACR(A). We first prove Claim 1 that is crucial for the
subsequent analysis.

Claim 1. For any element e ∈ R and position 1 ≤ j ≤ n, |Aej −
∑

F :(e,je,e,j)∈F
y∗F | ≤ ε/n3.

Proof. Since A is a doubly stochastic matrix, by the Birkhoff-von Neumann theorem there exists a
vector ŷ with ŷF ≥ 0 and

∑
F∈F(R) ŷF = 1 such that

|Aej −
∑

F :(e,j)∈F

ŷF | = 0 for all e ∈ R and 1 ≤ j ≤ n

Since y∗ is the optimal solution, we have that∑
F∈F(R)

CF · y∗F +
n4

ε
·
∑
e∈R

n∑
j=1

|Aej −
∑

F :(e,j)∈F

y∗F | ≤
∑

F∈F(R)

CF · ŷF .

Now the claim follows by the fact that 1 ≤ CF ≤ n, ŷF ≥ 0 and
∑
F∈F(R) ŷF = 1.

14

Having established Claim 1, we construct the solution z∗ that is feasible for the linear program
of Definition 3 and its value (under the linear program of Definition 3), is upper bounded by
(1 + ε) · FACR(A). For each position 1 ≤ i ≤ n,

z∗i =

 ∑
F∈F(R):CF≤i−1

y∗F −
ε

n


+

We first prove that z∗ is feasible for the linear program of Definition 3. At first observe that
in case z∗i = 0 or K(R) − |M | ≤ 0 for some M ⊆ R, the constraint (K(R)− |M |) · zi ≤∑i−1
j=1

∑
e∈R\M Aej is trivially satisfied. We thus turn our attention in the cases where z∗i =∑

F :CF≤i−1 y
∗
F − ε/n > 0 and K(R) − |M | ≥ 1 (recall, K(R) and |M | are integers). Applying

Claim 1 we get that,∑
e∈R\M

i−1∑
j=1

Aej ≥
∑

e∈R\M

i−1∑
j=1

 ∑
F :(e,j)∈F

y∗F − ε/n3


≥
∑

e∈R\M

i−1∑
j=1

∑
F :(e,j)∈F

y∗F − ε/n

=
∑

F∈F(R)

y∗F
∑

e∈R\M

i−1∑
j=1

1[(e, j) ∈ F]− ε/n

≥
∑

F :CF<i

y∗F
∑

e∈R\M

i−1∑
j=1

1[(e, j) ∈ F]− ε/n

≥ (K(R)− |M |)
∑

F :CF<i

y∗F − ε/n

= (K(R)− |M |) · z∗i + ε
K(R)− |M |

n
− ε/n

≥ (K(R)− |M |) · z∗i
where the second to last inequality follows from CF < i, and the last equation and the last inequality
follow from z∗i + ε/n =

∑
F :CF≤i−1 y

∗
F and K(R)− |M | ≥ 1, respectively.

We complete the proof of Lemma 3 by showing that
∑n
i=1(1− z∗i) ≤ (1 + ε) · FACR(A).

SWR(A) ≤
n∑
i=1

(1− z∗i)

≤
n∑
i=1

(
1−

∑
F :CF<i

y∗F + ε/n

)

=

n∑
i=1

(
1−

∑
F :CF<i

y∗F

)
+ ε

=

n∑
i=1

∑
F :CF≥i

y∗F + ε

=
∑

F∈F(R)

CF · y∗F + ε

≤ (1 + ε) · FACR(A)

B.2 Proof of Theorem 4

We first present the online sampling scheme, described in Algorithm 4, that produces the 11.713
guarantee of Theorem 4.

15

Algorithm 4 Converting Doubly Stochastic Matrices to Probability Distribution (the case of MSSC)
Input: A doubly stochastic matrix A ∈ DS.
Output: A probability distribution over permutations, PA ∼ π ∈ [n!].

1: Randomly pick α ∈ (0, 1) with probability density function f(α) = 2α.
2: Set B ← Q ·A where Q← 1.6783/α.
3: for all elements e = 1 to n do
4: for all positions j = 1 to bn/2c do
5: Be,2j ← Be,2j +Be,j
6: end for
7: end for
8: for all elements e = 1 to n do
9: Pick αe uniformly at random in [0, 1].

10: ie ← max{i :
∑i−1
j=1Bej < αe}

11: end for
12: Output the elements according to the order of ie’s.

We dedicate the rest of the section to prove Theorem 4. Notice that Algorithm 4 is identical to
Algorithm 3 with a slight difference in Step 2. Taking advantage of K(R) = 1, with tailored analysis,
we significantly improve to 11.713 the 28 bound of Lemma 2. Once Lemma 4 below is established,
Theorem 4 follows by the exact same steps that Theorem 3 follows using Lemma 2. The proof of
Lemma 4 is concluded at the end of the section.
Lemma 4. Let PA denote the probability distribution over permutations produced by Algorithm 4
when matrix A is given as input. For all requests R with K(R) = 1,

E
π∼PA

[AccessCost(π,R)] ≤ 11.713 · SWR(A)

where SWR(·) is the cost of Definition 3.

In fact SWR(·) takes a simpler form.
Corollary 2. For any request R with covering requirement K(R) = 1, the cost SWR(·) of Defini-
tion 3 takes the following simpler form,

SWR(A) =

n∑
i=1

1−
i−1∑
j=1

∑
e∈R

Aej


+

Lemma 5. [36] For the matrix B constructed at Step 2 of Algorithm 4, the following holds:

1.
2ki∑
j=1

Bej ≥ (k + 1)
i∑

j=1

Aej

2.
i∑

j=1

n∑
e=1

Bej ≤ 2Q · i.

Condition 2 of Lemma 5 allows for a bound on the expected access cost of the probability distribution
produced by Algorithm 4 with respect to the indices ie of Step 10. This is formally stated below.
Lemma 6. Let PAα denote the probability distribution produced in Steps 2− 11 of Algorithm 4 for a
fixed value of α. Then for any request R with covering requirements K(R) = 1,

E
π∼PA

α

[AccessCost(π,R)] ≤ 2Q · E[min
e∈R

ie] + 1,

with ie as defined in Step 10 of Algorithm 4.

Proof. Let ORi denote the set of elements outside R with index value ie ≤ i,

ORi = {e /∈ R : ie ≤ i}.

16

Notice that Algorithm 4 orders the elements with respect to the values ie (Step 12). Since the covering
requirements of the request R is K(R) = 1,

AccessCost(π,R) ≤ |ORmine∈R ie |+ 1.

The latter holds since R is covered at the first index in which one of its elements appears (K(R) = 1).
As a result,

E
π∼PAα

[AccessCost(π,R)] ≤ E[|ORmine∈R ie |] + 1 ≤
∑
e′ /∈R

Pr[ie′ ≤ min
e∈R

ie] + 1

It is not hard to see that,

∑
e′ /∈R

Pr[ie′ ≤ min
e∈R

ie] + 1 = E[
∑
e′ /∈R

mine∈R ie∑
j=1

Be′j] + 1 ≤ 2Q · E[min
e∈R

ie] + 1

where the first equality follows by the fact that, once B is fixed, Pr[ie ≤ k] =
∑k
j=1Bej (Step 10 of

Algorithm 4) and the last inequality follows by Case 2 of Lemma 5.

Lemma 7. Let iαR denote the first position at which
iαR∑
j=1

∑
e∈R

Aej ≥ α then

∫ 1

0

iαR dα ≤
n∑
i=1

1−
i−1∑
j=1

∑
e∈R

Aej


+

= SWR(A)

Proof. In order to prove Lemma 7, let us assume that a random variable β is selected according to the
uniform probability distribution in [0, 1], i.e., with density function f(β) = 1. As a result,

∫ 1

0
iαR dα =∫ 1

0
iβR dβ = E[iβR] =

n∑
i=1

Pr[iβR ≥ i]. Since iβR is the first position at which
iβR∑
j=1

∑
e∈R

Aej ≥ β,

Pr[iβR ≥ i] = Pr[β >

i−1∑
j=1

∑
e∈R

Aej] = max

1−
i−1∑
j=1

∑
e∈S

Aej , 0

 ≤ n∑
i=1

1−
i−1∑
j=1

∑
e∈R

Aej


+

with the second equality following because β is selected according to the uniform distribution in
[0, 1].

To this end we have upper bounded the expected access cost of Algorithm 4 by E[mine∈R ie]

(Lemma 4) and lower bounded SWR(A) by
∫ 1

0
iαR dα (Lemma 7). In Lemma 8 we associate these

bounds. At this point the role of Condition 1 of Lemma 5 is revealed.

Lemma 8. Let iαR denote the first position at which
iαR∑
j=1

∑
e∈R

Aej ≥ α then

E[min
e∈R

ie] ≤ iαR/(1− 2e−αQ).

Proof.

Pr[min
e∈R

ie ≥ 2k · iαR + 1] = Πe∈R Pr[ie ≥ 2k · iαR + 1]

= Πe∈R Pr[αe >

2k·iαR∑
j=1

Bej]

= Πe∈R

1−
2k·iαR∑
j=1

Bej


+

17

≤ e
−

∑
e∈R

2k·iαR∑
j=1

Bej

≤ e
−(k+1)Q

∑
e∈S

iαR∑
j=1

Aej

≤ e−(k+1)Qα = pk+1

where the second inequality follows by Case 1 of Lemma 5 and the definition (and manipulation) of
matrix B inside Algorithm 4.

E[min
e∈R

ie] = iαR +

∞∑
k=1

Pr[2k−1 · iαR + 1 ≤ iR ≤ 2k · iαR] · 2k · iαR

≤ iαR +

∞∑
k=1

2k · iαR · e−kQα = iαR/(1− 2e−Qα)

Lemma 9. Let Q := z/α for some positive constant z. For any request R with covering requirement
K(R) = 1,

E
π∼PA

[AccessCost(π,R)] ≤
(

4z

1− 2e−z
+ 1

)
·
n∑
i=1

1−
i−1∑
j=1

∑
e∈R

Aej


+

Proof.

E
π∼PA

[AccessCost(π,R)] =

∫ 1

0

E
π∼PAα

[AccessCost(π,R)] · (2α) dα

≤
∫ 1

0

2Q · E[min
e∈R

ie] · (2α) dα+

∫ 1

0

(2α) dα (Lemma 6)

=

∫ 1

0

4z · E[min
e∈R

ie]dα+ 1 (Q = z/α)

≤
∫ 1

0

4z · iαR/(1− 2e−z) dα+ 1 (Lemma 8 and Q = z/α)

=
4z

1− 2e−z

∫ 1

0

iαR dα+ 1 (z = αQ is constant)

≤
(

4z

1− 2e−z
+ 1

) n∑
i=1

1−
i−1∑
j=1

∑
e∈S

Aej


+

(Lemma 8)

=

(
4z

1− 2e−z
+ 1

)
SWR(A) (Corollary 2)

Lemma 4 directly follows by setting z := 1.6783 in Lemma 9.

We conclude the section with the following corollary that provides with a quadratic-time algorithm
for computing the subgradient in case of Min-Sum Set Cover problem.

Corollary 3. Let a doubly stochastic matrix A and a request R. Let i∗ denotes the index at which∑i−1
j=1Aej ≤ 1 and

∑i−1
j=1Aej > 1. Let also the n× n matrix B defined as follows,

Bej =

{
i∗ − j if j ≤ i∗ − 1 and e ∈ R
0 otherwise

The matrix B (vectorized) is a subgradient of the SWR(·) at point A.

18

B.3 Proof of Theorem 2

All steps of Algorithm 2 run in polynomial-time. In Step 3 of Algorithm 2, any (1+α)-approximation,
polynomial-time algorithm for minR∈[Rem]r AccessCost(R,A) can be used. The first choice that
comes in mind is exhaustive search over all the requests of size r, resulting in Θ(nr) time complex-
ity. Since the latter is not polynomial, we provide a (1 + α)-approximation algorithm running in
polynomial-time in both parameters n and r. For clarity of exposition the algorithm used in Step 3 is
presented in Section B.5. In the following we focus on proving Theorem 2.

We remark that by Corollary 2 of Section B.2 and Lemma 3 of Section B.1, for any request R with
covering requirement K(R) = 1,

n∑
i=1

1−
i−1∑
j=1

∑
e∈R

Aej , 0


+

≤ (1 + ε) · FACR(A) for any A ∈ DS

where ε is the parameter used in Definition 2. As a result, Theorem 2 follows directly by Theorem 5,
which is stated below and proved in the next section.
Theorem 5. Let πA ∈ [n!] denote the permutation of elements produced by Algorithm 2 when the
doubly stochastic matrix A ∈ DS is given as input. Then for any request R with |R| ≤ r and
K(R) = 1,

AccessCost(πA, R) ≤ 2(1 + α)2r ·
n∑
i=1

1−
i−1∑
j=1

∑
e∈R

Aej


+

.

B.4 Proof of Theorem 5

Consider a request R ∈ [nr] such that
(L− 1) · r + 1 ≤ AccessCost(πA, R) ≤ L · r (5)

for some integer L. Since K(R) = 1 this means that the first element of R appears between positions
(L− 1) · r + 1 and L · r in permutation πA.

To simplify notation we set Cost(A,R) :=
∑n
i=1

(
1−

∑i−1
j=1

∑
e∈RAej

)
+

. To prove Theorem 5

we show the following, which can be plugged in (5) and give the result:

Cost(A,R) ≥ L

2(1 + α)2
.

Let R` denote the request of size r composed by the elements lying from position (` − 1) · r + 1
to ` · r in the produced permutation πA. Recall the minimization problem of Step 3. R` is a (1+α)
approximately optimal solution for that problem and thus its corresponding cost is at most (1+α)
times the corresponding cost of any other same-cardinality subset of the remaining elements. Since
in πA all the elements of R lie on the right of position (L− 1) · r, all elements of R are present at the
L-th iteration and thus,

Cost(A,RL) ≤ (1 + α) · Cost(A,R)

Moreover, by the same reasoning,
Cost(A,R`) ≤ (1 + α) · Cost(A,RL), for all ` = 1, . . . , L.

Thus it suffices to show that Cost(A,RL) ≥ L/2(1 + α). The latter is established in Lemma 10,
which concludes the section.
Lemma 10. Let R1, R2, . . . , RL be disjoint requests of size r such that for all ` = 1, . . . , L,
Cost(A,R`) ≤ (1 + α) · Cost(A,RL). Then,

Cost(A,RL) ≥ L

2(1 + α)

Proof. For each request R` we define the quantity B`i as follows:

B`i =


∑
e∈R` Aei if

∑i
j=1

∑
e∈R` Aej < 1

1−
∑i−1
j=1

∑
e∈R` Aej if

∑i
j=1

∑
e∈R` Aej ≥ 1 and

∑i−1
j=1

∑
e∈R` Aej < 1

0 otherwise

19

Observation 1. The following 3 equations hold,

1.
∑n
i=1B`i = 1.

2. B`i ≤
∑
e∈R` Aei.

3. Cost(A,R`) =
∑n
i=1

(
1−

∑i−1
j=1

∑
e∈R` Aej

)
+

=
∑n
i=1

(
1−

∑i−1
j=1B`j

)
Since (1 + α) · Cost(A,RL) ≥ Cost(A,R`) for all ` = 1, . . . , L,

Cost(A,RL) ≥ 1

1 + α
· 1

L

L∑
`=1

Cost(A,R`) =
1

1 + α
·

 1

L

L∑
`=1

n∑
i=1

1−
i−1∑
j=1

B`j


=

1

1 + α
·

n− 1

L

L∑
`=1

n∑
i=1

i−1∑
j=1

B`j


=

1

1 + α
·

n− 1

L

n∑
i=1

i−1∑
j=1

Cj

 (where Cj =

L∑
`=1

B`j)

=
1

1 + α
·

[
n− 1

L

n∑
i=1

(n− i) · Ci

]
=

1

1 + α
·

[
n− n

L

n∑
i=1

Ci +
1

L

n∑
i=1

i · Ci

]

Observe that
∑n
i=1 Ci =

∑n
i=1

∑L
`=1B`i =

∑L
`=1

∑n
i=1B`i = L, where in the last equality we

used
∑n
i=1B`i = 1. Thus we get that

Cost(A,RL) ≥ 1

1 + α

[
1

L

n∑
i=1

i · Ci

]

To this end, to conclude the result, one can prove that
∑n
i=1 i · Ci ≥ L2/2 using that

∑n
i=1 Ci = L

and Ci ≤ 1. Ci ≤ 1 follows by the disjoint property of the requests R1, . . . , RL. More precisely,

Ci =

L∑
`=1

B`i ≤
L∑
`=1

∑
r∈R`

Ari

≤
n∑
e=1

Aei = 1

where the first inequality follows from Observation 1 and the last inequality by R1, . . . , RL not
sharing any element.

B.5 Implementing Step 3 of Algorithm 2 in Polynomial-Time

In this section we present a polynomial time algorithm implementing Step 3 of Algorithm 2. More
precisely, we present a Fully Polynomial-Time Approximation Scheme (FTPAS) for the combinatorial
optimization problem defined below, in Problem 1.

Problem 1. Given an n × n doubly stochastic matrix A and a set of elements Rem ⊆ {1, . . . , n}.
Select the r elements of Rem (R∗ ⊆ Rem with R∗ = r) minimizing,

n∑
i=1

1−
i−1∑
j=1

∑
e∈R∗

Aej


+

.

In fact we present a (1 +α)-approximation algorithm for a slightly more general problem, Problem 2.

20

Problem 2. Given a set of m vectors B1, . . . , Bm, of size n such that,

0 = Be1 ≤ Be2 ≤ . . . ≤ Ben = 1, for each e = 1,. . . ,m

Select the r vectors (R∗ ⊆ [m] with R∗ = r) minimizing
n∑
i=1

(
1−

∑
e∈R∗

Bei

)
+

Setting Bei =
∑i−1
j=1Aej , one can get Problem 1 as a special case of Problem 2.

Theorem 6. There exists a (1 +α)-approximation algorithm for Problem 2 that runs in Θ(n4r3/α2)
steps.

The (1 + α)-approximation algorithm of Problem 2 heavily relies on solving the Integer Linear
Program defined in Problem 3.
Problem 3. Given a set of m triples of integers (we, ce, de) such that ce, de ≥ 0 for each e ∈ {1,m}
and two positive integers C,D,

minimize
m∑
e=1

wexe

subject to
m∑
e=1

cexe ≥ C
m∑
e=1

dexe ≤ D
m∑
e=1

xe = r

xe ∈ {0, 1} e = 1, ...,m

Lemma 11. Problem 3 can be solved in Θ(n · C ·D · r) steps via Dynamic Programming.

Proof. Let DP(n, r, C,D) denotes the value of the optimal solution. Then

DP(n, r, C,D) = min (DP(n− 1, r − 1, C − xn, D − dn),DP(n− 1, r, C,D))

In the rest of the section, we present the (1 + α)-approximation algorithm for Problem 2 as stated in
Lemma 6 using the algorithmic primitive of Lemma 11.

We first assume the entries of the input vectors are multiples of small constant α << 1, Bei = kei ·α
for some integer kei. Under this assumption we can use the algorithm (stated in Lemma 11) for
Problem 3 to find the exact optimal solution of Problem 2 in Θ(n2r/α2) steps.

More precisely, for a fixed index k, let OPTk denotes the optimal solution among the set of vectors
of size r that additionally satisfy,∑

e∈R
Be(k−1) < 1 and

∑
e∈R

Bek ≥ 1 (6)

It is immediate that OPT = arg min1≤k≤n OPTk and thus the problem of computing OPT reduces
into computing OPTk for each index k. We can efficiently compute OPTk for each index k by
solving an appropriate instance of Problem 3. To do so, observe that for any set of vectorsR satisfying
the constraints of Equation (6) for the index k,

n∑
i=1

(
1−

∑
e∈R

Bei

)
+

=

k−1∑
i=1

(
1−

∑
e∈R

Bei

)
=
∑
e∈R

k−1∑
i=1

(
1

r
−Bei

)
︸ ︷︷ ︸

we

where the first equality comes from the fact that Be1 ≤ . . . ≤ Ben. It is not hard
to see that OPTk can be computed via solving the instance of Problem 3 with triples

21

(
we =

∑k−1
i=1

(
1
r −Bei

)
, ce = Be(k−1), de = Bek

)
for each e = 1 . . . ,m, D = 1 and C = 1.

Moreover by Lemma 11 this is done in Θ(nr/α2) steps. Thus the overall time complexity in order to
compute the optimal solution of Problem 2 (in case the entries Bei are multiplies of α) is Θ(n2r/α2).

We now remove the assumption that the entries Bei are multiples of α via relaxing the optimality
guarantees by a factor of (1 + α). We first construct a new set of vector with entries rounded to
the closest multiple of α, B̂ei = bBei/αc · α and solve the problem as if the entries where B̂ei in
Θ(n2r/α2) steps. The quality of the produced solution, call it Sol can be bounded as follows

n∑
i=1

(
1−

∑
e∈Sol

Bei

)
+

≤
n∑
i=1

(
1−

∑
e∈Sol

B̂ei

)
+

≤
n∑
i=1

(
1−

∑
e∈Sol

B̂ei

)
+

≤
n∑
i=1

(
1−

∑
e∈OPT

(Bei − α)

)
+

≤
n∑
i=1

(
1−

∑
e∈OPT

Bei

)
+

+ nr · α

Setting α := α′/nr, we get that

n∑
i=1

(
1−

∑
e∈Sol

Bei

)
+

≤
n∑
i=1

(
1−

∑
e∈OPT

Bei

)
+

+ α′ ≤ (1 + α′)

n∑
i=1

(
1−

∑
e∈OPT

Bei

)
+

since Be1 = 0 for all e. Thus, the overall time needed to produce a (1 + α′)-approximate solution is
Θ(n4r3/(α′)2), proving the result.

B.6 A simple heuristic for Problem 1

In this section we present a simple heuristic for Problem 1 that can be a good alternative of the
algorithm elaborated in Section B.5. We remark that Algorithm 5 may provide highly sub-optimal
solutions in the worst case however our experiments suggest that it works well enough in practice.
As explained in Section 5, in our experimental evaluations we use this heuristic to implement Step 3
of Algorithm 2. This was done since this heuristic is easier and faster to implement.

Algorithm 5 A simple heuristic for Problem 1
Input: A doubly stochastic matrix A ∈ DS.
Output: A set R (of r elements) approximating Problem 1

1: R = ∅
2: Target = (1, . . . , 1)︸ ︷︷ ︸

n

3: for ` = 1 to r do
4: e` ← arg mine∈{1,...,n}/R

(∑n
j=1 max(Target[j]−

∑j−1
s=1Aej , 0)

)
5: R← R ∪ {e`}
6: Target← (Target− (Ae1, . . . , Aen))+
7: end for
8: Output the set of elements R.

22

