
We sincerely thank all reviewers for their time and constructive feedback. We will add all minor clarifications and1

corrections to the final version (R2, R4, R5), as well as additional generated samples (R1). We are also thankful for the2

idea of R1 on how to extend our method using perturbations on Z, and will investigate this in the future. We address the3

main questions and criticisms in the following:4

CI(Y, Z) as a lower bound (R1). Thank you for this comment, we realized that we did not mention this in the5

paper, even though the answer is straight forward and enlightening: CI(Y,Z) is in fact a lower bound of I(Y,Z).6

This can be readily seen from Eq. 6: The first term is the entropy h(Y ), because the label distribution p(Y ) is known7

exactly. The second term can be rewritten as the negative cross-entropy −hq(Y | Z). For I(Y,Z), we have the8

negative entropy −h(Y | Z) as the second term instead. Because hq(Y | Z) ≥ h(Y | Z) (Gibbs’ inequality), we have9

CI(Y, Z) ≤ I(Y, Z). This is essentially the the same as the variational bound originally proposed by Barber & Agakov10

(2003): Their Eq. 3 corresponds to our Eq. 6, noting that their x is our Y , and their y is our Z. This is a bound that only11

works in this specific case, as the label distribution p(Y ) must be known for it to apply. We will add this to the final12

version.13

Mathematical assumptions about the network gθ (R4). We agree that the assumptions should be added to the text14

and propositions more explicitly, and we will rectify this for the final version. However, we do not see the assumptions15

as a ‘fundamental technical difficulty’: For all INN architectures used in practice, they are fulfilled by construction.16

This includes GLOW, RealNVP, NICE, i-ResNet, and more. In none of these cases, there is any need for any additional17

constraints, i.e. the assumptions are fulfilled per default. We refer to works such as Virmaux & Scaman (2018);18

Behrmann et al. (2020) for further details.19

Strengthening Prop. 1 and properties ofCI (R4). We also think that the CI is of great interest in general and should20

be further investigated in future. In our case, it is only used in a very specific way, so we did not consider strengthening21

or extending Prop. 1. Instead, we would like to refer to Xu et al. (2020), who derive various further theoretical results22

and insights concerning CI in general.23

Effect of hyperparameter σ (R5). In line with this suggestion, we will add some more experiments to the appendix24

concerning the effect of σ. As a first step, the following figure shows the behaviour for 25 different models trained with25

σ between 10−4 and 100 (x-axis), and fixed γ = 0.2. We find that the loss values (left) and performance characteristics26

(middle) do not depend on σ below a threshold that is comparable to the qantization step size ∆X . The models27

performance does not decrease even when σ is 50 times smaller than ∆X . Detrimental effects might occur more28

easily if the quantization steps are larger, e.g. ∆X = 1/32 as used by Kingma & Dhariwal (2018). The rightmost plot29

compares our approximation of CI(X,Zε) with the asymptotic I(X,Zε) + const. for σ → 0, where the constant is30

unknown. The slope of the approximation agrees well for small σ, but breaks down for larger values. This, and further31

experiments concerning the role of σ will be added to the final version.32
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