- We thank all the reviewers for their helpful corrections and feedback. We will incorporate them into the revised version.
- **R1:** We thank R1 for pointing out the missing eigenvalue notation. With regards to comments in weakness section,
- 1. In the fully agnostic setting (where the model is completely misspecified) we don't believe our results apply
- because the identity of the underlying shared representation becomes ambiguous. But for small degrees of model
- misspecification, we believe our results can be extended there at the price of additional error terms in our guarantees.
- 2. Our current results assume homogeneous sample size across different tasks for a clean presentation. We believe
- our techniques/results can be easily extended to non-homogeneous sample sizes across different tasks (with additional
- notational modifications in our results). 8
- 3. The "classifier head" of Example 3 (in Appendix A) is actually a nonlinear function. We agree that further 9 investigating the task diversity definition for different examples is an important direction for future research. 10
- 4. We believe the neural network example will generalize to the logistic loss (by combining with the contents in Section 11
- 4.1). We opted for our current choice of different losses/functions to exhibit the utility of our general framework. 12
- 5. We believe that other bounds on the Gaussian/Rademacher complexity can directly be applied in our framework 13 with little modification (such as [1, Theorem 5] for example). However, our framework does not directly accommodate 14
- margin bounds-such as in [2]-and extending our results to include these is an interesting future direction for research. 15
- 6: We agree that investigating the experimental implications of our bounds is an important direction for future work. 16
- R2: We thank R2 for pointing out the typos, and suggestions for clarification. With regards to the typos in the
- "Additional Feedback" Section. For 1: f refers to an ERM solution in the task variables of the training risk in Eq.
- 2-the pair $(\hat{\mathbf{f}}, \hat{\mathbf{h}})$ refers an entire ERM solution in Eq.2; we will define/clarify this. For 2: The union should be written 19
- 20
- $\mathbf{h} \in C_{\mathcal{H}_X}$ (referring to the \mathcal{H} covering with respect to inputs \mathbf{X}). For 3: Yes, both terms should be primed (and the statement should be more clearly written as, "given this \mathbf{h}' , $\exists \mathbf{f}' \in C_{\mathcal{F}_{\mathbf{h}'(\mathbf{X})}^{\otimes t}}$ that is ϵ_2 -close to \mathbf{f} with respect to inputs 21
- $\mathbf{h}'(\mathbf{X})$. By construction, $\mathbf{h}' \in C_{\mathcal{H}_X}$ and $\mathbf{f}' \in C_{\mathcal{F}^{\otimes t}(\mathcal{H})}$."). We will correct/clarify the notation here.
- With regards to Gaussian complexity vs Rademacher complexity, we chose to include only Gaussian complexities in the 23
- main paper to simplify the presentation, since the chain rule is most naturally stated in terms of Gaussian complexities. 24
- Since Gaussian/Rademacher complexities are equivalent up to logarithmic factors [3, p.97] we could also rewrite all our 25
- results in terms of Rademacher complexities at the cost of only logarithmic factors. 26
- With regards to the comments in the weakness section, we believe our notion of task diversity can be understood in a nat-27
- ural way, and will provide further discussion and intuition to interpret it—see the following. Our framework/arguments 28
- (which hold for general \mathcal{F} , \mathcal{H} and ℓ) do require abstraction, but we also believe this abstraction is a strength that allows 29
- our guarantees to be applied to a wide class of problems. 30
- Definition 1 and Definition 2 seek to define two notions of distance between two representations h, h'. In our 31
- framework, information about the representations is only observed through the composite functions $f \circ \mathbf{h}$. For any 32
- direction/component in h that is not seen by a corresponding task f, that component of the representation h cannot 33
- be distinguished from a corresponding one in a spurious h'. When this component is needed to predict on a new task 34
- f_0 which lies along that direction, transfer learning will not be possible. Therefore, Definition 1 defines a notion of
- representation distance in terms of information channeled through the training tasks while Definition 2 defines it in 36
- terms of an arbitrary new test task. Task diversity essentially encodes the ratio of these two quantities (i.e. how well 37
- the training tasks can observe relevant parts of the representations useful for the new task). In the case where the \mathcal{F} 38
- contains underlying linear task functions $\alpha_i^* \in \mathbb{R}^r$ (as in our examples in Section 4), our task diversity definition 39 reduces to ensuring these task vectors span the entire r-dimensional space containing the output of the representation 40
- $\mathbf{h}(\cdot) \in \mathbb{R}^r$. This is quantitatively captured by the conditioning parameter $\tilde{\nu} = \sigma_r(\mathbf{A})$ for $\mathbf{A} = (\boldsymbol{\alpha}_1^{\star}, \dots, \boldsymbol{\alpha}_t^{\star})^{\top} \in \mathbb{R}^{t \times r}$ 41
- which represents how correlated these vectors are in \mathbb{R}^r . Appendix A gives a further task diversity example when \mathcal{F} 42
- contains nonparametric functions. We will provide further explanation of these definitions and their relationship to each 43
- specific example in the final version.
- R3: We thank R3 for their comments and agree studying transfer learning in frameworks other then those using 45 Gaussian complexities (i.e. with more refined data-dependent bounds as R1 mentions), is an interesting future direction. 46
- [1] Golowich, Noah, Alexander Rakhlin, and Ohad Shamir. "Size-independent sample complexity of neural networks." 47 Conference On Learning Theory. 2018.
- [2] Wei, Colin, and Tengyu Ma. "Improved sample complexities for deep neural networks and robust classification via an all-layer margin." International Conference on Learning Representations. 2019. 50
- [3] Ledoux, Michel, and Talagrand, Michel. Probability in Banach Spaces.