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Abstract

We provide new statistical guarantees for transfer learning via representation
learning–when transfer is achieved by learning a feature representation shared
across different tasks. This enables learning on new tasks using far less data than is
required to learn them in isolation. Formally, we consider t+1 tasks parameterized
by functions of the form fj � h in a general function class F �H, where each fj

is a task-specific function in F and h is the shared representation in H. Letting
C(·) denote the complexity measure of the function class, we show that for diverse
training tasks (1) the sample complexity needed to learn the shared representation
across the first t training tasks scales as C(H) + tC(F), despite no explicit access
to a signal from the feature representation and (2) with an accurate estimate of the
representation, the sample complexity needed to learn a new task scales only with
C(F). Our results depend upon a new general notion of task diversity–applicable
to models with general tasks, features, and losses–as well as a novel chain rule for
Gaussian complexities. Finally, we exhibit the utility of our general framework in
several models of importance in the literature.

1 Introduction

Transfer learning is quickly becoming an essential tool to address learning problems in settings with
small data. One of the most promising methods for multitask and transfer learning is founded on the
belief that multiple, differing tasks are distinguished by a small number of task-specific parameters,
but often share a common low-dimensional representation. Undoubtedly, one of the most striking
successes of this idea has been to only re-train the final layers of a neural network on new task
data, after initializing its earlier layers with hierarchical representations/features from ImageNet (i.e.,
ImageNet pretraining) [Donahue et al., 2014, Gulshan et al., 2016]. However, the practical purview of
transfer learning has extended far beyond the scope of computer vision and classical ML application
domains such as deep reinforcement learning [Baevski et al., 2019], to problems such as protein
engineering and design [Elnaggar et al., 2020].

In this paper, we formally study the composite learning model in which there are t+ 1 tasks whose
responses are generated noisily from the function f

?

j
� h?, where f?

j
are task-specific parameters in a

function class F and h? an underlying shared representation in a function class H. A large empirical
literature has documented the performance gains that can be obtained by transferring a jointly learned
representation h to new tasks in this model [Yosinski et al., 2014, Raghu et al., 2019, Lee et al., 2019].
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There is also a theoretical literature that dates back at least as far as [Baxter, 2000]. However, this
progress belies a lack of understanding of the basic statistical principles underlying transfer learning1:

How many samples do we need to learn a feature representation shared across tasks and use
it to improve prediction on a new task?

In this paper we study a simple two-stage empirical risk minimization procedure to learn a new,
j = 0th task which shares a common representation with t different training tasks. This procedure
first learns a representation ĥ ⇡ h? given n samples from each of t different training tasks, and then
uses ĥ alongside m fresh samples from this new task to learn f̂0 � ĥ ⇡ f

?
0 � h?. Informally, our main

result provides an answer to our sampling-complexity question by showing that the excess risk of
prediction of this two-stage procedure scales (on the new task) as2,

Õ

 
1

⌫
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C(H) + tC(F)
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!
+

r
C(F)

m

!
,

where C(H) captures the complexity of the shared representation, C(F) captures the complexity of
the task-specific maps, and ⌫ encodes a problem-agnostic notion of task diversity. The latter is a key
contribution of the current paper. It represents the extent to which the t training tasks f?

j
cover the

space of the features h?. In the limit that n, t ! 1 (i.e., training task data is abundant), to achieve a
fixed level of constant prediction error on the new task only requires the number of fresh samples to
be m ⇡ C(F). Learning the task in isolation suffers the burden of learning both F and H—requiring
m ⇡ C(F �H)—which can be significantly greater than the transfer learning sample complexity.

Maurer et al. [2016] present a general, uniform-convergence based framework for obtaining gen-
eralization bounds for transfer learning that scale as O(1/

p
t) + O(1/

p
m) (for clarity we have

suppressed complexity factors in the numerator). Perhaps surprisingly, the leading term capturing the
complexity of learning h? decays only in t but not in n. This suggests that increasing the number
of samples per training task cannot improve generalization on new tasks. Given that most transfer
learning applications in the literature collect information from only a few training tasks (i.e., n � t),
this result does not provide a fully satisfactory explanation for the practical efficacy of transfer
learning methods.

Our principal contributions in this paper are as follows:

• We introduce a problem-agnostic definition of task diversity which can be integrated into a
uniform convergence framework to provide generalization bounds for transfer learning problems
with general losses, tasks, and features. Our framework puts this notion of diversity together
with a common-design assumption across tasks to provide guarantees of a fast convergence rate,
decaying with all of the samples for the transfer learning problem.

• We provide general-purpose bounds which decouple the complexity of learning the task-specific
structure from the complexity of learning the shared feature representation. Our results repose
on a novel user-friendly chain rule for Gaussian processes which may be of independent interest
(see Theorem 7). Crucially, this chain rule implies a form of modularity that allows us to exploit
a plethora of existing results from the statistics and machine learning literatures to individually
bound the sample complexity of learning task and feature functions.

• We highlight the utility of our framework for obtaining end-to-end transfer learning guarantees
for several different multi-task learning models including (1) logistic regression, (2) deep neural
network regression, and (3) robust regression for single-index models.

1.1 Related Work

The utility of multitask learning methods was observed at least as far back as Caruana [1997]. In
recent years, representation learning, transfer learning, and meta-learning have been the subject
of extensive empirical investigation in the machine learning literature (see [Bengio et al., 2013],

1A problem which is also often referred to as learning-to-learn (LTL).
2See Theorem 3 and discussion for a formal statement. Note our guarantees also hold for nonparametric

function classes, but the scaling with n, t, m may in general be different.
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[Hospedales et al., 2020] for surveys in these directions). However, theoretical work on transfer
learning—particularly via representation learning—has been much more limited.

A line of work closely related to transfer learning is gradient-based meta-learning (MAML) [Finn
et al., 2017]. These methods have been analyzed using techniques from online convex optimization,
using a (potentially data-dependent) notion of task similarity which assumes that tasks are close to a
global task parameter [Finn et al., 2019, Khodak et al., 2019a, Denevi et al., 2019a,b, Khodak et al.,
2019b]. Additionally, Ben-David and Borbely [2008] define a different notion of distributional task
similarity they use to show generalization bounds. However, these works do not study the question of
transferring a common representation in the generic composite learning model that is our focus.

In settings restricted to linear task mappings and linear features, Lounici et al. [2011], Pontil and
Maurer [2013], and Cavallanti et al. [2010] have provided sample complexity bounds for the problem
of transfer learning via representation learning. Lounici et al. [2011] and Obozinski et al. [2011] also
address sparsity-related issues that can arise in linear feature learning.

To our knowledge, Baxter [2000] is the first theoretical work to provide generalization bounds
for transfer learning via representation learning in a general setting. The formulation of Baxter
[2000] assumes a generative model over tasks which share common features; in our setting, this task
generative model is replaced by the assumption that training tasks are diverse (as in Definition 3)
and that there is a common covariate distribution across different tasks. In follow-up work, Maurer
et al. [2016] propose a general, uniform-convergence-based framework for obtaining transfer learning
guarantees which scale as O(1/

p
t) + O(1/

p
m) [Maurer et al., 2016, Theorem 5]. The second

term represents the sample complexity of learning in a lower-dimensional space given the common
representation. The first term is the bias contribution from transferring the representation—learned
from an aggregate of nt samples across different training tasks—to a new task. Note this leading
term decays only in t and not in n: implying that increasing the number of samples per training task
cannot improve generalization on new tasks. Unfortunately, under the framework studied in that
paper, this ⌦(1/

p
t) cannot be improved Maurer et al. [2016].

Recent work in Tripuraneni et al. [2020] and Du et al. [2020] has shown that in specific settings
leveraging (1) common design assumptions across tasks and (2) a particular notion of task diversity,
can break this barrier and yield rates for the leading term which decay as O(poly(1/(nt))). However,
the results and techniques used in both of these works are limited to the squared loss and linear
task maps. Moreover, the notion of diversity in both cases arises purely from the linear-algebraic
conditioning of the set of linear task maps. It is not clear from these works how to extend these
ideas/techniques beyond the case-specific analyses therein.

2 Preliminaries

Notation: We use bold lower-case letters (e.g., x) to refer to vectors and bold upper-case letters
(e.g., X) to refer to matrices. The norm k · k appearing on a vector or matrix refers to its `2 norm
or spectral norm respectively. We use the bracketed notation [n] = {1, . . . , n} as shorthand for
integer sets. Generically, we will use “hatted” vectors and matrices (e.g, ↵̂ and B̂) to refer to
(random) estimators of their underlying population quantities. �1(A), . . . ,�r(A) will denote the
sorted singular values (in decreasing magnitude) of a rank r matrix A. Throughout we will use
F to refer to a function class of tasks mapping Rr

! R and H to be a function class of features
mapping Rd

! Rr. For the function class F , we use F
⌦t to refer its t-fold Cartesian product, i.e.,

F
⌦t = {f ⌘ (f1, . . . , ft) | fj 2 F for any j 2 [t]}. We use Õ to denote an expression that hides

polylogarithmic factors in all problem parameters.

2.1 Transfer learning with a shared representation

In our treatment of transfer learning, we assume that there exists a generic nonlinear feature represen-
tation that is shared across all tasks. Since this feature representation is shared, it can be utilized to
transfer knowledge from existing tasks to new tasks. Formally, we assume that for a particular task j,
we observe multiple data pairs {(xji, yji)} (indexed over i) that are sampled i.i.d from an unknown

distribution Pj , supported over X ⇥ Y and defined as follows:

Pj(x, y) = Pf?
j �h

?(x, y) = Px(x)Py|x(y|f
?

j
� h?(x)). (1)
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Here, h? : Rd
! Rr is the shared feature representation, and f

?

j
: Rr

! R is a task-specific mapping.
Note that we assume that the marginal distribution over X—Px—is common amongst all the tasks.

We consider transfer learning methods consisting of two phases. In the first phase (the training phase),
t tasks with n samples per task are available for learning. Our objective in this phase is to learn
the shared feature representation using the entire set of nt samples from the first j 2 [t] tasks. In
the second phase (the test phase), we are presented with m fresh samples from a new task that we
denote as the 0th task. Our objective in the test phase is to learn this new task based on both the fresh
samples and the representation learned in the first phase.

Formally, we consider a two-stage Empirical Risk Minimization (ERM) procedure for transfer
learning. Consider a function class F containing task-specific functions, and a function class H

containing feature maps/representations. In the training phase, the empirical risk for t training tasks
is:

R̂train(f ,h) :=
1

nt

tX

j=1

nX

i=1

`(fj � h(xji), yji), (2)

where `(·, ·) is the loss function and f := (f1, . . . , ft) 2 F
⌦t. Our estimator ĥ(·) for the shared data

representation is given by ĥ = argminh2H
minf2F⌦t R̂train(f ,h).

For the second stage, the empirical risk for learning the new task is defined as:

R̂test(f,h) :=
1

m

mX

i=1

`(f � h(x0i), y0i). (3)

We estimate the underlying function f
?
0 for task 0 by computing the ERM based on the feature

representation learned in the first phase. That is, f̂0 = argminf2F
R̂test(f, ĥ). We gauge the efficacy

of the estimator (f̂0, ĥ) by its excess risk on the new task, which we refer to as the transfer learning

risk:

Transfer Learning Risk = Rtest(f̂0, ĥ)�Rtest(f
?

0 ,h
?). (4)

Here, Rtest(·, ·) = E[R̂test(·, ·)] is the population risk for the new task and the population risk over the
t training tasks is similarly defined as Rtrain(·, ·) = E[R̂train(·, ·)]; both expectations are taken over the
randomness in the training and test phase datasets respectively. The transfer learning risk measures
the expected prediction risk of the function (f̂0, ĥ) on a new datapoint for the 0th task, relative to the
best prediction rule from which the data was generated—f

?
0 � h?.

2.2 Model complexity

A well-known measure for the complexity of a function class is its Gaussian complexity. For a
generic vector-valued function class Q containing functions q(·) : Rd

! Rr, and N data points,
X̄ = (x1, . . . ,xN )>, the empirical Gaussian complexity is defined as

ĜX̄(Q) = Eg[sup
q2Q

1

N

rX

k=1

NX

i=1

gkiqk(xi)], gki ⇠ N (0, 1) i.i.d.,

where g = {gki}k2[r],i2[N ], and qk(·) is the k-th coordinate of the vector-valued function q(·).
We define the corresponding population Gaussian complexity as GN (Q) = EX̄[ĜX̄(Q)], where
the expectation is taken over the distribution of data samples X̄. Intuitively, GN (Q) measures the
complexity of Q by the extent to which functions in the class Q can correlate with random noise gki.

3 Main Results

We now present our central theoretical results for the transfer learning problem. We first present
statistical guarantees for the training phase and test phase separately. Then, we present a problem-
agnostic definition of task diversity, followed by our generic end-to-end transfer learning guarantee.
Throughout this section, we make the following standard, mild regularity assumptions on the loss
function `(·, ·), the function class of tasks F , and the function class of shared representations H.
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Assumption 1 (Regularity conditions). The following regularity conditions hold:

• The loss function `(·, ·) is B-bounded, and `(·, y) is L-Lipschitz for all y 2 Y .

• The function f is L(F)-Lipschitz with respect to the `2 distance, for any f 2 F .

• The composed function f �h is bounded: supx2X
|f �h(x)|  DX , for any f 2 F ,h 2 H.

We also make the following realizability assumptions, which state that the true underlying task
functions and the true representation are contained in the function classes F ,H over which the
two-stage ERM oracle optimizes in (2) and (3).
Assumption 2 (Realizability). The true representation h?

is contained in H. Additionally, the true

task specific functions f
?

j
are contained in F for both the training tasks and new test task (i.e., for

any j 2 [t] [ {0}).

3.1 Learning shared representations

In order to measure “closeness” between the learned representation and true underlying feature
representation, we need to define an appropriate distance measure between arbitrary representations.
To this end, we begin by introducing the task-averaged representation difference, which captures
the extent two representations h and h0 differ in aggregate over the t training tasks measured by the
population train loss.
Definition 1. For a function class F , t functions f = (f1, . . . , ft), and data (xj , yj) ⇠ Pfj�h as in
(1) for any j 2 [t], the task-averaged representation difference between representations h,h0

2 H

is:

d̄F,f (h
0;h) =

1

t

tX

j=1

inf
f 02F

Exj ,yj

n
`(f 0

� h0(xj), yj)� `(fj � h(xj), yj)
o
.

Under this metric, we can show that the distance between a learned representation and the true
underlying representation is controlled in the training phase. Our following guarantees also feature
the worst-case Gaussian complexity over the function class F , which is defined as:3

Ḡn(F) = max
Z2Z

ĜZ(F), where Z = {(h(x1), · · · ,h(xn)) | h 2 H,xi 2 X for all i 2 [n]}. (5)

where Z is the domain induced by any set of n samples in X and any representation h 2 H. Moreover,
we will always use the subscript nt, on Gnt(Q) = EX[ĜX(Q)], to refer to the population Gaussian
complexity computed with respect to the data matrix X formed from the concatentation of the nt

training datapoints {xji}
t,n

j=1,i=1. We can now present our training phase guarantee.

Theorem 1. Let ĥ be an empirical risk minimizer of R̂train(·, ·) in (2). Then, if Assumptions 1 and 2

hold, with probability at least 1� �:

d̄F,f?(ĥ;h
?)  16LGnt(F

⌦t
�H) + 8B

r
log(2/�)

nt

 4096L


DX

(nt)2
+ log(nt) · [L(F) ·Gnt(H) + Ḡn(F)]

�
+ 8B

r
log(2/�)

nt
.

Theorem 1 asserts that the task-averaged representation difference (Definition 1) between our learned
representation and the true representation is upper bounded by the population Gaussian complexity
of the vector-valued function class F⌦t

�H = {(f1 � h, . . . , ft � h) : (f1, . . . , ft) 2 F
⌦t
,h 2 H},

plus a lower-order noise term. Up to logarithmic factors and lower-order terms, this Gaussian
complexity can be further decomposed into the complexity of learning a representation in H with
nt samples—L(F) ·Gnt(H)—and the complexity of learning a task-specific function in F using n

3Note that a stronger version of our results hold with a sharper, data-dependent version of the worst-case
Gaussian complexity that eschews the absolute maxima over xi. See Corollary 1 and Theorem 7 for the formal
statements.
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samples per task—Ḡn(F). For the majority of parametric function classes used in machine learning
applications, Gnt(H) ⇠

p
C(H)/nt and Ḡn(F) ⇠

p
C(F)/n, where the function C(·) measures

the intrinsic complexity of the function class (e.g., VC dimension, absolute dimension, or parameter
norm [Wainwright, 2019]).

We now make several remarks on this result. First, Theorem 1 differs from standard supervised
learning generalization bounds. Theorem 1 provides a bound on the distance between two repre-
sentations as opposed to the empirical or population training risk, despite the lack of access to a
direct signal from the underlying feature representation. Second, the decomposition of Gnt(F⌦t

�H)
into the individual Gaussian complexities of H and F , leverages a novel chain rule for Gaussian
complexities (see Theorem 7), which may be of independent interest. This chain rule (Theorem 7)
can be viewed as a generalization of classical Gaussian comparison inequalities and results such
as the Ledoux-Talagrand contraction principle [Ledoux and Talagrand, 2013]. Further details and
comparisons to the literature for this chain rule can be found in Appendix B.2 (this result also avoids
an absolute maxima over xi 2 X ).

3.2 Transferring to new tasks

In addition to the task-averaged representation difference, we also introduce the worst-case represen-

tation difference, which captures the distance between two representations h0, h in the context of an
arbitrary worst-case task-specific function f0 2 F0.
Definition 2. For function classes F and F0 such that f0 2 F0, and data (x, y) ⇠ Pf0�h as in (1),
the worst-case representation difference between representations h,h0

2 H is:

dF,F0(h
0;h) = sup

f02F0

inf
f 02F

Ex,y

n
`(f 0

� h0(x), y)� `(f0 � h(x), y)
o
.

For flexibility we allow F0 to be distinct from F (although in most cases, we choose F0 ⇢ F).
The function class F0 is the set of new tasks on which we hope to generalize. The generalization
guarantee for the test phase ERM estimator follows.

Theorem 2. Let f̂0 be an empirical risk minimizer of R̂test(·, ĥ) in (3) for any feature representation

ĥ. Then if Assumptions 1 and 2 hold, and f
?
0 2 F0 for an unknown class F0, with probability at least

1� �:

Rtest(f̂0, ĥ)�Rtest(f
?

0 ,h
?)  dF,F0(ĥ;h

?) + 16L · Ḡm(F) + 8B

r
log(2/�)

m

Here Ḡm(F) is again the worst-case Gaussian complexity4 as defined in (5). Theorem 2 provides an
excess risk bound for prediction on a new task in the test phase with two dominant terms. The first is
the worst-case representation difference dF,F0(ĥ;h

?), which accounts for the error of using a biased
feature representation ĥ 6= h? in the test ERM procedure. The second is the difficulty of learning f

?
0

with m samples, which is encapsulated in Ḡm(F).

3.3 Task diversity and end-to-end transfer learning guarantees

We now introduce the key notion of task diversity. Since the learner does not have direct access to a
signal from the representation, they can only observe partial information about the representation
channeled through the composite functions f?

j
� h?. If a particular direction/component in h? is not

seen by a corresponding task f
?

j
in the training phase, that component of the representation h? cannot

be distinguished from a corresponding one in a spurious h0. When this component is needed to
predict on a new task corresponding to f

?
0 which lies along that particular direction, transfer learning

will not be possible. Accordingly, Definition 1 defines a notion of representation distance in terms of
information channeled through the training tasks, while Definition 2 defines it in terms of an arbitrary
new test task. Task diversity essentially encodes the ratio of these two quantities (i.e. how well the
training tasks can cover the space captured by the representation h? needed to predict on new tasks).
Intuitively, if all the task-specific functions were quite similar, then we would only expect the training

4As before, a stronger version of this result holds with a sharper data-dependent version of the Gaussian
complexity in lieu of Ḡm(F) (see Corollary 2).
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stage to learn about a narrow slice of the representation—making transferring to a generic new task
difficult.
Definition 3. For a function class F , we say t functions f = (f1, . . . , ft) are (⌫, ✏)-diverse over F0

for a representation h, if uniformly for all h0
2 H,

dF,F0(h
0;h)  d̄F,f (h

0;h)/⌫ + ✏.

Up to a small additive error ✏, diverse tasks ensure that the worst-case representation difference for
the function class F0 is controlled when the task-averaged representation difference for a sequence of
t tasks f is small. Despite the abstraction in this definition of task diversity, it exactly recovers the
notion of task diversity in Tripuraneni et al. [2020] and Du et al. [2020], where it is restricted to the
special case of linear functions and quadratic loss. Our general notion allows us to move far beyond
the linear-quadratic setting as we show in Section 4 and Appendix A.1.

We now utilize the definition of task diversity to merge our training phase and test phase results into
an end-to-end transfer learning guarantee for generalization to the unseen task f

?
0 � h?.

Theorem 3. Let (·, ĥ) be an empirical risk minimizer of R̂train(·, ·) in (2), and f̂0 be an empirical

risk minimizer of R̂test(·, ĥ) in (3) for the learned feature representation ĥ. Then if Assumptions 1

and 2 hold, and the training tasks are (⌫, ✏)-diverse, with probability at least 1 � 2�, the transfer

learning risk in (4) is upper-bounded by:

O

⇣
L log(nt) ·

h
L(F) ·Gnt(H) + Ḡn(F)

⌫

i
+ LḠm(F) +

LDX

⌫(nt)2
+B

h1
⌫
·

r
log(2/�)

nt
+

r
log(2/�)

m

i
+ ✏

⌘
.

Theorem 3 gives an upper bound on the transfer learning risk. The dominant terms in the bound
are the three Gaussian complexity terms. For parametric function classes we expect Gnt(H) ⇠p
C(H)/(nt) and ḠN (F) ⇠

p
C(F)/N , where C(H) and C(F) capture the dimension-dependent

size of the function classes. Therefore, when L and L(F) are constants, the leading-order terms for
the transfer learning risk scale as Õ(

p
(C(H) + t · C(F))/(nt) +

p
C(F)/m). A naive algorithm

which simply learns the new task in isolation, ignoring the training tasks, has an excess risk scaling
as Õ(

p
C(F �H)/m) ⇡ Õ(

p
(C(H) + C(F))/m). Therefore, when n and t are sufficiently large,

but m is relatively small (i.e., the setting of few-shot learning), the performance of transfer learning
is significantly better than the baseline of learning in isolation.

4 Applications

We now consider a varied set of applications to instantiate our general transfer learning framework. In
each application, we first specify the function classes and data distributions we are considering as well
as our assumptions. We then state the task diversity and the Gaussian complexities of the function
classes, which together furnish the bounds on the transfer learning risk–from (4)–in Theorem 3.

4.1 Multitask Logistic Regression

We first instantiate our framework for one of the most frequently used classification methods—logistic
regression. Consider the setting where the task-specific functions are linear maps, and the underlying
representation is a projection onto a low-dimensional subspace. Formally, let d � r, and let the
function classes F and H be:

F ={ f | f(z) = ↵>z, ↵ 2 Rr
, k↵k  c1}, (6)

H ={ h | h(x) = B>x, B 2 Rd⇥r
, B is a matrix with orthonormal columns}.

Here X = Rd, Y = {0, 1}, and the measure Px is ⌃-sub-gaussian (see Definition 4) and D-bounded
(i.e., kxk  D with probability one). We let the conditional distribution in (1) satisfy:

Py|x(y = 1|f � h(x)) = �(↵>B>x),

where �(·) is the sigmoid function with �(z) = 1/(1 + exp(�z)). We use the logistic loss `(z, y) =
�y log(�(z))� (1� y) log(1� �(z)). The true training tasks take the form f

?

j
(z) = (↵?

j
)>z for all

j 2 [t], and we let A = (↵?
1, . . . ,↵

?
t
)> 2 Rt⇥r. We make the following assumption on the training

tasks being “diverse” and both the training and new task being normalized.
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Assumption 3. �r(A>A/t) = ⌫̃ > 0 and k↵?

j
k  O(1) for j 2 [t] [ {0}.

In this case where the F contains underlying linear task functions ↵?

j
2 Rr (as in our examples

in Section 4), our task diversity definition reduces to ensuring these task vectors span the entire
r-dimensional space containing the output of the representation h(·) 2 Rr. This is quantitatively
captured by the conditioning parameter ⌫̃ = �r(A) which represents how spread out these vectors are
in Rr. The training tasks will be well-conditioned in the sense that �1(A>A/t)/�r(A>A/t)  O(1)
(w.h.p.) for example, if each ↵t ⇠ N (0, 1

p
r
⌃) i.i.d. with �1(⌃)/�r(⌃)  O(1).

Assumption 3 with natural choices of F0 and F establishes (⌦(⌫̃), 0)-diversity as defined in Definition
3 (see Lemma 1). Finally, by standard arguments, we can bound the Gaussian complexity of H in this
setting by GN (H)  Õ(

p
dr2/N). We can also show that a finer notion of the Gaussian complexity

for F , serving as the analog of ḠN (F), is upper bounded by Õ(
p
r/N). This is used to sharply

bound the complexity of learning F in the training and test phases (see proof of Theorem 4 for more
details). Together, these give the following guarantee.
Theorem 4. If Assumption 3 holds, h?(·) 2 H, and F0 = { f | f(x) = ↵>z, ↵ 2 Rr

, k↵k 

c2}, then there exist constants c1, c2 such that the training tasks f
?

j
are (⌦(⌫̃), 0)-diverse over

F0. Furthermore, if for a sufficiently large constant c3, n � c3(d + log t), m � c3r, and D 

c3(min(
p

dr2,
p
rm)), then with probability at least 1� 2�:

Transfer Learning Risk  Õ

 
1

⌫̃

 r
dr2

nt
+

r
r

n

!
+

r
r

m

!
.

A naive bound for logistic regression ignoring the training task data would have a guarantee
O(
p
d/m). For n and t sufficiently large, the bound in Theorem 4 scales as Õ(

p
r/m), which is

a significant improvement over O(
p

d/m) when r ⌧ d. Note that our result in fact holds with the
empirical data-dependent quantities tr(⌃X) and

P
r

i=1 �i(⌃Xj ) which can be much smaller then
their counterparts d, r in Theorem 4, if the data lies on/or close to a low-dimensional subspace5.

4.2 Multitask Deep Neural Network Regression

We now consider the setting of real-valued neural network regression. Here the task-specific functions
are linear maps as before, but the underlying representation is specified by a depth-K vector-valued
neural network:

h(x) = WK�K�1(WK�1(�K�2(. . .�(W1x)))). (7)

Each Wk is a parameter matrix, and each �k is a tanh activation function. We let kWk1,1 =
maxj(

P
k
|Wj,k|) and kWk1!2 be the induced 1-to-2 operator norm. Formally, F and H are6

F ={ f | f(z) = ↵>z, ↵ 2 Rr
, k↵k  c1M(K)2}, (8)

H ={h(·) 2 Rr in (7) for Wk : kWkk1,1  M(k) for k 2 [K � 1],

max(kWKk1,1, kWKk1!2)  M(K), such that �r

�
Ex[h(x)h(x)

>]
�
> ⌦(1)}.

We consider the setting where X = Rd, Y = R, and the measure Px is D-bounded. We also let the
conditional distribution in (1) be induced by:

y = ↵>h(x) + ⌘ for ↵,h as in (8), (9)

with additive noise ⌘ bounded almost surely by O(1) and independent of x. We use the standard
squared loss `(↵>h(x), y) = (y �↵>h(x))2, and let the true training tasks take the form f

?

j
(z) =

(↵?

j
)>z for all j 2 [t], and set A = (↵?

1, . . . ,↵
?
t
)> 2 Rt⇥r as in the previous example. Here we use

exactly the same diversity/normalization assumption on the task-specific maps—Assumption 3—as
in our logistic regression example.

5Here ⌃X̄ denotes the empirical covariance of the data matrix X̄. See Corollary 3 for the formal statement
of this sharper, more general result.

6For the following we make the standard assumption each parameter matrix Wk satisfies kWkk1,1  M(k)
for each j in the depth-K network [Golowich et al., 2017], and that the feature map is well-conditioned.
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Choosing F0 and F appropriately establishes a (⌦(⌫̃), 0)-diversity as defined in Definition 3 (see
Lemma 6). Standard arguments as well as results in Golowich et al. [2017] allow us to bound the
Gaussian complexity terms as follows (see the proof of Theorem 5 for details):

GN (H)  Õ

 
rM(K) ·D

p
K ·⇧K�1

k=1 M(k)
p
N

!
; ḠN (F)  Õ

✓
M(K)3
p
N

◆
.

Combining these results yields the following end-to-end transfer learning guarantee.
Theorem 5. If Assumption 3 holds, h?(·) 2 H, and F0 = { f | f(z) = ↵>z, ↵ 2 Rr

, k↵k  c2},

then there exist constants c1, c2 such that the training tasks f
?

j
are (⌦(⌫̃), 0)-diverse over F0. Further,

if M(K) � c3 for a universal constant c3, then with probability at least 1� 2�:

Transfer Learning Risk  Õ

 
rM(K)6 ·D

p
K ·⇧K�1

k=1 M(k)

⌫̃
p
nt

+
M(K)6

⌫̃
p
n

+
M(K)6
p
m

!
.

The poly(M(K)) dependence of the guarantee on the final-layer weights can likely be improved,
but is dominated by the overhead of learning the complex feature map h?(·) which has complexity
poly(M(K)) · D

p
K · ⇧K�1

k=1 M(k). By contrast a naive algorithm which does not leverage the
training samples would have a sample complexity of Õ

⇣
poly(M(K)) ·D

p
K ·⇧K�1

k=1 M(k)/
p
m

⌘

via a similar analysis. Such a rate can be much larger than the bound in Theorem 5 when nt � m:
exactly the setting relevant to that of few-shot learning for which ImageNet pretraining is often used.

4.3 Multitask Index Models

To illustrate the flexibility of our framework, in our final example, we consider a classical statistical
model: the index model, which is often studied from the perspective of semiparametric estimation
[Bickel et al., 1993]. As flexible tools for general-purpose, non-linear dimensionality reduction, index
models have found broad applications in economics, finance, biology and the social sciences [Bickel
et al., 1993, Li and Racine, 2007, Otwinowski et al., 2018]. This class of models has a different flavor
then previously considered: the task-specific functions are nonparametric “link” functions, while
the underlying representation is a one-dimensional projection. The formal set-up and full transfer
generalization guarantees are deferred to Appendix A.1.

5 Conclusion

We present a framework for understanding the generalization abilities of generic models which share
a common, underlying representation. In particular, our framework introduces a novel notion of
task diversity through which we provide guarantees of a fast convergence rate, decaying with all of

the samples for the transfer learning problem. One interesting direction for future consideration is
investigating the effects of relaxing the common design and realizability assumptions on the results
presented here. We also believe extending the results herein to accommodate “fine-tuning” of learned
representations – that is, mildly adapting the learned representation extracted from training tasks to
new, related tasks – is an important direction for future work.

Broader Impact

As a theoretical paper we do not foresee our work directly having any societal consequences. However,
transfer learning is a tool increasingly used in practical machine learning applications. Theoretical
explorations related to transfer learning may help provide frameworks through which to reason about,
and design, safer and more reliable algorithms.
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