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Abstract

We study an extension of the classic stochastic multi-armed bandit problem which
involves multiple plays and Markovian rewards in the rested bandits setting. In
order to tackle this problem we consider an adaptive allocation rule which at each
stage combines the information from the sample means of all the arms, with the
Kullback-Leibler upper confidence bound of a single arm which is selected in
round-robin way. For rewards generated from a one-parameter exponential family
of Markov chains, we provide a finite-time upper bound for the regret incurred
from this adaptive allocation rule, which reveals the logarithmic dependence of the
regret on the time horizon, and which is asymptotically optimal. For our analysis
we devise several concentration results for Markov chains, including a maximal
inequality for Markov chains, that may be of interest in their own right. As a
byproduct of our analysis we also establish asymptotically optimal, finite-time
guarantees for the case of multiple plays, and i.i.d. rewards drawn from a one-
parameter exponential family of probability densities. Additionally, we provide
simulation results that illustrate that calculating Kullback-Leibler upper confidence
bounds in a round-robin way, is significantly more efficient than calculating them
for every arm at each round, and that the expected regrets of those two approaches
behave similarly.

1 Introduction

In this paper we study a generalization of the stochastic multi-armed bandit problem, where there are
K independent arms, and each arm a € [K] = {1,..., K} is associated with a parameter 6, € R,
and modeled as a discrete time stochastic process governed by the probability law P, . A time horizon
T is prescribed, and at each round ¢ € [T] = {1,...,T} we select M arms, where 1 < M < K,
without any prior knowledge of the statistics of the underlying stochastic processes. The M stochastic
processes that correspond to the selected arms evolve by one time step, and we observe this evolution
through a reward function, while the stochastic processes for the rest of the arms stay frozen, i.e.
we consider the rested bandits setting. Our goal is to select arms in such a way so as to make the
cumulative reward over the whole time horizon T as large as possible. For this task we are faced with
an exploitation versus exploration dilemma. At each round we need to decide whether we are going
to exploit the best M arms according to the information that we have gathered so far, or we are going
to explore some other arms which do not seem to be so rewarding, just in case that the rewards we
have observed so far deviate significantly from the expected rewards. The answer to this dilemma
is usually coming by calculating indices for the arms and ranking them according to those indices,
which should incorporate both information on how good an arm seems to be as well as on how many

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.


mailto:vrettos@berkeley.edu

times it has been played so far. Here we take an alternative approach where instead of calculating the
indices for all the arms at each round, we just calculate the index for a single arm in a round-robin
way.

1.1 Contributions

1. We first consider the case that the K stochastic processes are irreducible Markov chains,
coming from a one-parameter exponential family of Markov chains. The objective is to play
as much as possible the M arms with the largest stationary means, although we have no
prior information about the statistics of the &' Markov chains. The difference of the best
possible expected rewards coming from those M best arms and the expected reward coming
from the arms that we played is the regret that we incur. To minimize the regret we consider
an index based adaptive allocation rule, Algorithm 1, which is based on sample means and
Kullback-Leibler upper confidence bounds for the stationary expected rewards using the
Kullback-Leibler divergence rate. We provide a finite-time analysis, Theorem 1, for this
KL-UCB adaptive allocation rule which shows that the regret depends logarithmically on
the time horizon 7', and matches exactly the asymptotic lower bound, Corollary 1.

2. In order to make the finite-time guarantee possible we devise several deviation lemmata
for Markov chains. An exponential martingale for Markov chains is proven, Lemma 3,
which leads to a maximal inequality for Markov chains, Lemma 1. In the literature there are
several approaches that use martingale techniques either to derive Hoeffding inequalities for
Markov chains [15, 30], or more generally to study concentration of measure for Markov
chains [24, 25, 26, 34, 27, 8, 19, 33]. Nonetheless, they’re all based either on Dynkin’s
martingale or on Doob’s martingale, combined with coupling ideas, and there is no evidence
that they can lead to maximal inequalities. Moreover, a Chernoff bound for Markov chains
is devised, Lemma 2, and its relation with the work of [31] is discussed in Remark 4.

3. We then consider the case that the K stochastic processes are i.i.d. processes, each corre-
sponding to a density coming from a one-parameter exponential family of densities. We
establish, Theorem 2, that Algorithm 1 still enjoys the same finite-time regret guarantees,
which are asymptotically optimal. The case where Theorem 2 follows directly from The-
orem 1 is discussed in Remark 2. The setting of single plays is studied in [7], but with a
much more computationally intense adaptive allocation rule.

4. In Section 6 we provide simulation results illustrating the fact that round-robin KL-UCB
adaptive allocation rules are much more computationally efficient than KL-UCB adaptive
allocation rules, and similarly round-robin UCB adaptive allocation rules are more compu-
tationally efficient than UCB adaptive allocation rules, while the expected regrets, in each
family of algorithms, behave in a similar way. This brings to light round-robin schemes as
an appealing practical alternative to the mainstream schemes that calculate indices for all
the arms at each round.

1.2 Motivation

Multi-armed bandits provide a simple abstract statistical model that can be applied to study real
world problems such as clinical trials, ad placement, gambling, adaptive routing, resource allocation
in computer systems etc. We refer the interested reader to the survey of [6] for more context, and
to the recent books of [21, 35]. The need for multiple plays can be understood in the setting of
resource allocation. Scheduling jobs to a single CPU is an instance of the multi-armed bandit problem
with a single play at each round, where the arms correspond to the jobs. If there are multiple CPUs
we get an instance of the multi-armed bandit problem with multiple plays. The need of a richer
model which allows the presence of Markovian dependence is illustrated in the context of gambling,
where the arms correspond to slot-machines. It is reasonable to try to model the assertion that if a
slot-machine produced a high reward the n-th time played, then it is very likely that it will produce
a much lower reward the (n + 1)-th time played, simply because the casino may decide to change
the reward distribution to a much stingier one if a big reward was just produced. This assertion
requires, the reward distributions to depend on the previous outcome, which is precisely captured by
the Markovian reward model. Moreover, we anticipate this to be an important problem attempting to
bridge classical stochastic bandits, controlled Markov chains (MDPs), and non-stationary bandits.



Table 1: Summary of relevant results about regret minimization for stochastic multi-armed bandits

work rewards indices analysis

[20] Lid. round-robin KL-UCB | asymptotic
[3] Markovian round-robin KL-UCB | asymptotic
[1] iid. UCB asymptotic
[4] ii.d. UCB finite-time
[37] Markovian UCB finite-time
[12] i.i.d. KL-UCB finite-time
this work Markovian round-robin KL-UCB | finite-time

1.3 Related Work

The cornerstone of the multi-armed bandits literature is the pioneering work of [20], which studies
the problem for the case of i.i.d. rewards and single plays. [20] introduced the change of measure
argument to derive a lower bound for the problem, as well as round robin adaptive allocation rules
based on upper confidence bounds which are proven to be asymptotically optimal. [2] extend the
results of [20] to the case of i.i.d. rewards and multiple plays, while [1] considers index based
allocation rules which are only based on sample means and are computationally simpler, although
they may not be asymptotically optimal. The work of [1] inspired the first finite-time analysis
for the adaptive allocation rule called UCB by [4], which is though asymptotically suboptimal.
The works of [7, 12, 23] bridge this gap by providing the KL-UCB adaptive allocation rule, with
finite-time guarantees which are asymptotically optimal. Additionally, [18] study a Thompson
sampling algorithm for multiple plays and binary rewards, and they establish a finite-time analysis
which is asymptotically optimal. Here we close the problem of multiple plays and rewards coming
from an exponential family of probability densities by showing finite-time guarantees which are
asymptotically optimal, via adaptive allocation rules which are much more efficiently computable
than their precursors.

The study of Markovian rewards and multiple plays in the rested setting, is initiated in the work
of [3]. They report an asymptotic lower bound, as well as a round robin upper confidence bound
adaptive allocation rule which is proven to be asymptotically optimal. However, it is unclear if the
statistics that they use in order to derive the upper confidence bounds, in their Theorem 4.1, can be
recursively computed, and the practical applicability of their results is therefore questionable. In
addition, they don’t provide any finite-time analysis, and they use a different type of assumption on
their one-parameter family of Markov chains. In particular, they assume that their one-parameter
family of transition probability matrices is log-concave in the parameter, equation (4.1) in [3], while
we assume that it is a one-parameter exponential family of transition probability matrices. [37, 38]
extend the UCB adaptive allocation rule of [4], to the case of Markovian rewards and multiple plays.
They provide a finite-time analysis, but their regret bounds are suboptimal. Moreover they impose a
different type of assumption on their configuration of Markov chains. They assume that the transition
probability matrices are reversible, so that they can apply Hoeffding bounds for Markov chains
from [14, 22]. In a recent work [30] developed a Hoeffding bound for Markov chains, which does not
assume any conditions other than irreducibility, and using this he extended the analysis of UCB to an
even broader class of Markov chains. One of our main contributions is to bridge this gap and provide
a KL-UCB adaptive allocation rule, with a finite-time guarantee which is asymptotically optimal. In
a different line of work [32, 38] consider the restless bandits Markovian reward model, in which the
state of each arm evolves according to a Markov chain independently of the player’s action. Thus in
the restless setting the state that we next observe is now dependent on the amount of time that elapses
between two plays of the same arm.

2 Problem Formulation

2.1 One-Parameter Family of Markov Chains

We consider a one-parameter family of irreducible Markov chains on a finite state space S. Each
member of the family is indexed by a parameter § € R, and is characterized by an initial distribution
g0 = [go()]zes, and an irreducible transition probability matrix Py = [Py(x,y)]s,yes, which
give rise to a probability law Py. There are K > 2 arms, with overall parameter configuration



0 = (01,...,0x) € R, and each arm a € [K] = {1,..., K} evolves internally as the Markov
chain with parameter 6, which we denote by {X2},cz.,. There is a common noncostant real-
valued reward function on the state space f : S — R, and successive plays of arm a result in
observing samples from the stochastic process {Y,%},cz.,, where Y% = f(X2). In other words,
the distribution of the rewards coming from arm a is a function of the Markov chain with parameter
6., and thus it can have more complicated dependencies. As a special case, if we pick the reward
function f to be injective, then the distribution of the rewards is Markovian.

For 6 € R, due to irreducibility, there exists a unique stationary distribution for the transition proba-
bility matrix Py which we denote with 7y = [79()].cs. Furthermore, let u(6) = > ¢ f(x)mo ()
be the stationary mean reward corresponding to the Markov chain parametrized by 6. Without loss of
generality we may assume that the K arms are ordered so that,

p(h) = ... = p(n) > p(Oni1) ..o = pllv) = ... = p(0r) > p(0r41) = ... = pllk),
forsome N € {0,...,M — 1} and L € {M,..., K}, where N = 0 means that u( 1) =...=
w(0r), L = K means that u(6y) = ... = p(0x), and we set pu(6p) = oo and pu(0x4+1) =

2.2 Regret Minimization

We fix a time horizon T, and at each round ¢t € [T = {1,...,T} we play a set ¢; of M distinct arms,
where 1 < M < K is the same through out the rounds, and we observe rewards {Zf}ae[ K] given by,
ZE =Yy - I{a € ¢+}, where N*(t) = 22:1 I{a € ¢} is the number of times we played arm
a up to time ¢. Using the stopping times 7% = inf{t > 1: N%(t) = n}, we can also reconstruct the
{Y:? bnez., process, from the observed {Z }iez_, process, via the identity Y, = ZZ.. Our play ¢;
is based on the information that we have accumulated so far. In other words, the event {¢, = A}, for
A C [K] with |A] = M, belongs to the o-field generated by ¢1, {Zf }ae(k]s - - > Pt—1, 121 Yac|K]-
We call the sequence ¢ = {¢; }1ez., of our plays an adaptive allocation rule. Our goal is to come
up with an adaptive allocation rule ¢, that achieves the greatest possible expected value for the sum
of the rewards,

T N(T)
St=3 ) Z=) ) W
t=1 a€[K] a€[K] n=1
which is equivalent to minimizing the expected regret,
TZ 1(6a) — EY[St]. (1)

2.3 Asymptotic Lower Bound

A quantity that naturally arises in the study of regret minimization for Markovian bandits is the
Kullback-Leibler divergence rate between two Markov chains, which is a generalization of the usual
Kullback-Leibler divergence between two probability distributions. We denote by D (8 || A) the
Kullback-Leibler divergence rate between the Markov chain with parameter 6 and the Markov chain
with parameter \, which is given by,

DEO|N= log mo(x) Py (2, y), @)

z,y€S

where we use the standard notational conventions log 0 = oo, log § = oo if a > 0, and Olog 0 =
0Olog 2 = 0. Indeed note that, if Py(x,-) = py(-) and Px(z,-) = pa(-), forall 2 € S, i.e. in the
special case that the Markov chains correspond to IID processes, then the Kullback-Leibler divergence
rate D (6 || \) is equal to the Kullback-Leibler divergence D (py || px) between py and pj,

IV Zlog”" ) ng"g (y) = D (po || pa)-

T,yeS yeSs

Under some regularity assumptions on the one-parameter family of Markov chains, [3] in their
Theorem 3.1 are able to establish the following asymptotic lower bound on the expected regret for



any adaptive allocation rule ¢ which is uniformly good across all parameter configurations,

RY(T) _ <~ pul0ar) — p(0h)
Z 2 D00 v

A further discussion of this lower bound, as well as an alternative derivation can be found in Ap-
pendix D,

2.4 One-Parameter Exponential Family Of Markov Chains

Let S be a finite state space, f : S — R be a nonconstant reward function on the state space, and
P an irreducible transition probability matrix on S, with associated stationary distribution 7. P
will serve as the generator stochastic matrix of the family. Let u(0) = > ¢ f(z)7(x) be the
stationary mean of the Markov chain induced by P when f is applied. By tilting exponentially
the transitions of P we are able to construct new transition matrices that realize a whole range of
stationary means around /(0) and form the exponential family of stochastic matrices. Let § € R,
and consider the matrix Py(z,y) = P(z,y)e?/®). Denote by p(6) its spectral radius. According to
the Perron-Frobenius theory, see Theorem 8.4.4 in the book of [16], p(0) is a simple eigenvalue of
Py, called the Perron-Frobenius eigenvalue, and we can associate to it unique left ug and right vg
eigenvectors such that they are both positive, > g ug(z) = 1and ) g ug(x)ve(x) = 1. Using
them we define the member of the exponential family which corresponds to the natural parameter ¢
as,

Pafa9) = 9 exp 107(y) — M)} Pla), @
vp(x)

where A(0) = log p(0) is the log-Perron-Frobenius eigenvalue. It can be easily seen that Py(z, y) is
indeed a stochastic matrix, and its stationary distribution is given by 7y (x) = wug(x)ve(z). The initial
distribution gy associated to the parameter 6, can be any distribution on S, since the KL-UCB adaptive
allocation rule that we devise, and its guarantees, will be valid no matter the initial distributions.
Example 1 (Two-state chain). Let S = {0, 1}, and consider the transition probability matrix, P,
representing two coin-flips, Bernoulli(p) when we’re in state 0, and Bernoulli(g) when we’re in state
1. Let f(z) = 2x — 1 be the state reward function, and denote let { P : 6 € R} be the exponential
family of transition probability matrices generated by P and f. Then,

l—p p 1 [(1=pe? pO) —(1—p)e?
P pu— P p— 5 d P = 5
’ {1 4 ‘1} P00 [0(0) — gef qe’

where the Perron-Frobenius eigenvalue is given by,

(1—ple? 4+ qe’ + /(1 — p)e=? — qe?)? + 4p(1 — q)

0) = .
p(0) 5
In the special case that p = ¢, we get back the typical exponential family of Bernoulli(pg) coin-flips,
with
(1—p)e’
l—-pp=———"""7"—>.
P A= p)e? + ped

Exponential families of Markov chains date back to the work of [28]. For a short overview of one-
parameter exponential families of Markov chains, as well as proofs of the following properties, we
refer the reader to Section 2 in [31]. The log-Perron-Frobenius eigenvalue A(6) is a convex analytic
function on the real numbers, and through its derivative, A(6), we obtain the stationary mean 1(6) of
the Markov chain with transition matrix P, when f is applied, i.e. A(0) = () = Y wes f(@)mo(x).
When A(6) is not the linear function 6§ — 1(0)6, the log-Perron-Frobenius eigenvalue, A(#), is
strictly convex and thus its derivative A(Q) is strictly increasing, and it forms a bijection between the
natural parameter space, R, and the mean parameter space, M = A(R), which is a bounded open
interval.

The Kullback-Leibler divergence rate from (2), when instantiated for the exponential family of
Markov chains, can be expressed as,

D@ A) = A = A0) = AB)(A - 0),



which is convex and differentiable over R x R. Since A : R — M forms a bijection from the natural
parameter space, R, to the mean parameter space, M, with some abuse of notation we will write

D (u || v)for D (A’l(u) H A’l(l/)), where ;1, v € M. Furthermore, D (- || -) : M x M — R>g

can be extended continuously, to a function D (- || -) : M x M — Rxq U {00}, where M denotes
the closure of M. This can even further be extended to a convex function on R x R, by setting
D(pllv)=oc0if u & Morv & M. For fixed v € R, the function p — D (p || v) is decreasing
for 4 < v and increasing for ;1 > v. Similarly, for fixed p € R, the function v — D (p || v) is
decreasing for v < y and increasing for v > pu.

3 A Maximal Inequality for Markov Chains

The following definition is the technical condition that we will require for our maximal inequality.
Definition 1 (Doeblin’s type of condition). Let P be a transition probability matrix on the finite state
space S. For a nonempty set of states A C S, we say that P is A-Doeblin if, the submatrix of P
with rows and columns in A is irreducible, and for every € S — A there exists y € A such that
P(z,y) > 0.

Example 1 (continued). For this example P being {0}-Doeblin means that p, ¢ € [0, 1), but already
irreducibility requires that p € (0,1] and ¢ € [0, 1), hence the only additional constraint is p # 1.
Remark 1. Our Definition 1 is inspired by the classic Doeblin’s Theorem, see Theorem 2.2.1 in [36].
Doeblin’s Theorem states that, if the transition probability matrix P satisfies Doeblin’s condition
(namely there exists € > 0, and a state y € .S such that for all z € S we have P(x,y) > €), then P has
a unique stationary distribution 7, and for all initial distributions ¢ we have geometric convergence
to stationarity, i.e. ||¢P™ — m|j1 < 2(1 — €)™. Doeblin’s condition, according to our Definition 1,
corresponds to P being {y}-Doeblin for some y € S.

Lemma 1 (Maximal inequality for irreducible Markov chains satisfying Doeblin’s condition). Let
{Xn}nez-, be an irreducible Markov chain over the finite state space S with transition matrix P,
initial distribution q, and stationary distribution 7. Let f : S — R be a non-constant function on
the state space. Denote by 1(0) = 3 .o f(x)7(x) the stationary mean when f is applied, and by

Y, = L 371, Yy the empirical mean, where Yy, = f(X};). Assume that P is (argmin,cg f(x))-
Doeblin. Then for all € > 1 we have

P (U {1(0) > Yy and kD (Yy || u(0)) > e}) < C_elelognle™,
k=1

where C_ = C_(P, f) is a positive constant depending only on the transition probability matrix P
and the function f.

Proof of this and other concentration lemmata can be found in Appendix A. Li.d. versions of this
maximal inequality have found applicability not only in multi-armed bandit problems, but also in
the case of context tree estimation, [13], indicating that our Lemma 1 may be of interest for other
applications as well.

4 The Round-Robin KL-UCB Adaptive Allocation Rule for Multiple Plays
and Markovian Rewards

For each arm a € [K] we define the empirical mean at the global time ¢ as,
Yo(t) = (Y + ...+ Y5 (1y)/Na(t), 5)

and its local time counterpart as,

Vo= (Vi 4+ Y0,

with their link being Y, = Y,(7¢), where 7¢ = inf{t > 1 : N,(t) = n}. At each round t we
calculate a single upper confidence bound index,

U, (t) = sup {u eEM:D (Y1) || n) < 9(t) } ) (6)



where g(t) is an increasing function, and we denote its local time version by,

= t
Uﬁ(t)sup{uEM:D(Yf | 1) < ggl)}
Note that U, (t) is efficiently computable via a bisection method due to the monotonicity of
D (Y,(t) || -). Itis straightforward to check, using the definition of UZ(t), the following two
relations,

Y2 <U2(t) forall n < t, @)
U; (t) is increasing in ¢ > n for fixed n. (8)

Furthermore, in Appendix B we study the concentration properties of those upper confidence indices
and of the sample means, using the concentration results for Markov chains from Section 3. The idea
of calculating indices in a round robin way, dates back to the seminal work of [20]. Here we exploit
this idea, which seems to have been forgotten over time in favor of algorithms that calculate indices
for all the arms at each time, and we augment it with the usage of the upper confidence bounds in (6),
which are efficiently computable, see Section 6 for simulation results, as opposed to the statistics in
Theorem 4.1 from [3]. Moreover, this combination of a round-robin scheme and the indices in (6) is
amenable to a finite-time analysis, see Appendix C.

Algorithm 1: The round-robin KL-UCB adaptive allocation rule.

Parameters: number of arms K > 2, time horizon T' > K, number of plays 1 < M < K,

KL divergence rate function D (- || ) : M x M — Rx, increasing function g : Z~o — R,
parameter § € (0,1/K);

Initializaton: In the first K rounds pull each arm M times and set
Yo(K)="+...+YY) /M, fora=1,... | K;

fort=K,...,T—1do

Let Wy = {a € [K] : No(t) > [0t]};

Pick any subset of arms L; C W; such that:

|L;| = M, and min Y,(t) > sup Y,(t);
a€L; beW;—Ly

Letb=t+1 (mod K), withb € [K];
_ '
Let Uy(t) = sup {u EM:D (Y(t) || ) < 9(t) };
if b € L; or min Y, (t) > Uy(t) then
a€c Ly

| Pull the M arms in ¢y 11 = Ly;
else

Pick any a € arg min Y, (¢);
acLly
Pull the M arms in ¢y1 = (Lt \ {a}) U {b};

end
end

Theorem 1 (Markovian rewards and multiple plays: finite-time guarantees). Let P be an irreducible
transition probability matrix on the finite state space S, and f : S — R be a real-valued reward
function, such that P is (arg min,c g f(x))-Doeblin. Assume that the I arms correspond to the pa-
rameter configuration @ € R of the exponential family of Markov chains, as described in Equation 4.
Without loss of generality assume that the K arms are ordered so that,

p(0h) > ... > p(On) > pOn41) o = pn) = ... = p(0r) > p(lr+1) = ... > p(0k).

Fix e € (0, min(p(0n) — w(0nrr), p(0ar) — 1(0r41))). The KL-UCB adaptive allocation rule for
Markovian rewards and multiple plays, Algorithm 1, with the choice g(t) = logt + 3 log log t, enjoys
the following finite-time upper bound on the regret,

K

Orr) — 11(0

Rg(T) < Z 1(0nr) — 1(6s) 10gT+cl\/@+0210glogT+c3 loglog T + ¢4,
vl D () || 1(Oar) =€)

where c1, ca, c3, c4 are constants with respect to T', which are given more explicitly in the analysis.



Corollary 1 (Asymptotic optimality). In the context of Theorem I the KL-UCB adaptive allocation
rule, Algorithm 1, is asympmtically optimal and,

9M — ()
Z D b) || w(Oar))

b=L+1

lim
T1~>oo log T

5 The Round-Robin KL-UCB Adaptive Allocation Rule for Multiple Plays
and i.i.d. Rewards

As a byproduct of our work in Section 4 we further obtain a finite-time regret bound, which is
asymptotically optimal, for the case of multiple plays and i.i.d. rewards, from an exponential family
of probability densities.

We first review the notion of an exponential family of probability densities, for which the standard
reference is [5]. Let (X, X, p) be a probability space. A one-parameter exponential family is a family
of probability densities {py : 0 € O} with respect to the measure p on X, of the form,

po(w) = exp{0f (x) — A(O)}h(x), ©)
where f : X — R is called the sufficient statistic, is X'-measurable, and there is no ¢ € R such that
flx) PE2% e h: X — R is called the carrier density, and is a density with respect to p, and
A is called the log-Moment—_Generating-Function and is given by A(6) = log [ e’/ @ h(z)p(dx),

which is finite for ¢ in the natural parameter space © = {0 € R : [, e’/ h(z)p(dz) < co}. The
log-MGF, A(0), is strictly convex and its derivative forms a bijection between the natural parameters,
6, and the mean parameters, 1(0) = [ f X )p(dx). The Kullback-Leibler divergence between

py and py, for 6, A € O, can be ertten as D (0 || ) =A\) — AB) — A(O)(\ —0).

For this section, each arm a € [K| with parameter §, corresponds to the i.i.d. process { X2 }nez. .,
where each X has density py, with respect to p, which gives rise to the i.i.d. reward process
(Y nen,. with Y = [(X2).

Remark 2. When there is a finite set S € X such that p(S) = 1, then the exponential family of
probability densities in Equation 9, is just a special case of the exponential family of Markov chains
in Equation 4, as can be seen by setting P(z,-) = h(:), forall z € S. Then vg(x) = 1 forallx € S,
the log-Perron-Frobenius eigenvalue coincides with the log-MGF, and © = R. Therefore, Theorem 1
already resolves the case of multiple plays and i.i.d. rewards from an exponential family of finitely
supported densities.

Theorem 2 (i.i.d. rewards and multiple plays: finite-time guarantees). Let (X, X, p) be a probability
space, f : X — R a X-measurable function, and h : X — R+, a density with respect to p. Assume

that the K arms correspond to the parameter configuration 8 € ©F of the exponential family of
probability densities, as described in Equation 9. Without loss of generality assume that the K arms
are ordered so that,

p(h) = ... = p(On) > p(Ongr) .o = plOn) = ... = p(0r) > p(0r41) = ... = p0k).
Fix e € (0, min(u(0n) — 1(0nr), w(0ar) — u(0r+1))). The KL-UCB adaptive allocation rule for
i.i.d. rewards and multiple plays, Algorithm 1, with the choice g(t) = logt + 3loglogt, enjoys the
following ﬁnite—time upper bound on the regret,

(6 0
Z Dl ) = 1(6) logT + c1y/logT + caloglog T + c3+4/loglog T + ¢4,

vl D () | M(9M) €)

where c1, ca, c3, cq are constants with respect to T

Remark 3. For the special case of single plays, M = 1, such a finite-time regret bound is derived
in [7], and here we generalize it for multiple plays, 1 < M < K. One striking difference is that we
consider calculations of KL upper confidence bounds in a round-robin way, as opposed to calculating
them for all the arms at each round. But computing KL-UCB indices adds an extra computational
overhead, as it entails inverting an increasing function via the bisection method. Thus, our approach
has important practical implications as it leads to significantly more efficient algorithms. In particular,
if we run the bisection method until we reach accuracy J, then the KL.-UCB of [7] has a cost of
O(K log1/4) per round, while the round-robin KL-UCB described in Algorithm 1 has a cost of
O(K +log1/6) per round.



6 Simulation Results

In the context of Example 1, we set p = 0.49, ¢ = 0.45, K = 14, and T = 105. We generated the
bandit instance 61, . . . , 6 by drawing i.i.d. N (0, 1/16) samples. Four adaptive allocation rules were
taken into consideration:

1. UCB: at reach round calculate all UCB indices,

2logt
Na(t)

UJP(t) = Ya(t) + 8 ,fora=1,..., K.

)

2. Round-Robin UCB: at reach round calculate a single UCB index,

; 2log ¢
UYP(t) = Yy (t) + 8 No(gt),onlyforbthrl (mod K).
b

3. KL-UCB: at reach round calculate all KL-UCB indices,

_ logt + 3loglogt
UyL—UCB@):sup{MeM:D(Ya(t) HM)SW},forazL...

4. Round-Robin KL-UCB: at reach round calculate a single KL-UCB index,

- logt + 3loglogt
USE=YCB (1) = sup {u eEM:D (Yy(t) || ) < ogJ;V(to)gog} ,only forb =t+1 (mod K).
b
For the UCB indices, after some tuning, we picked 5 = 1 which is significantly smaller than the
theoretical values of 3 from [37, 38, 30]. For each of those adaptive allocation rules 10* Monte Carlo
iterations were performed in order to estimate the expected regret, and the simulation results are
presented in the following plots.
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Figure 1: Regret of the various algorithms as Figure 2: Regret of the various algorithms as
a function of time in linear scale. a function of time in logarithmic scale.

For our simulations we used the programming language C, to produce highly efficient code, and a
personal computer with a 2.6GHz processor and 16GB of memory. We report that the simulation
for the Round-Robin KL-UCB adaptive allocation rule was 14.48 times faster than the simulation
for the KL-UCB adaptive allocation rule. This behavior is expected since each calculation of a KL-
UCB index induces a significant computation cost as it involves finding the inverse of an increasing
function using the bisection method. Additionally, the simulation for the Round-Robin UCB adaptive
allocation rule was 3.15 times faster than the simulation for the KL.-UCB adaptive allocation rule,
and this is justified from the fact that calculating mathematical functions such as log(-) and /-, is
more costly than calculating averages which only involve a division. Our simulation results yield that
in practice round-robin schemes are significantly faster than schemes that calculate the indices of all
the arms at each round, and the computational gap is increasing with the number of arms K, while
the behavior of the expected regrets is very similar.



Statement of Broader Impact

This work touches upon a very old problem dating back to 1933 and the work of [39]. Therefore, we
don’t anticipate any new societal impacts or ethical aspects, that are not well understood by now.
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