
Appendix A Concentration Lemmata for Markov Chains

We first develop a Chernoff bound, which remarkably does not impose any conditions on the Markov
chain other than irreducibility, which is though a mandatory requirement for the stationary mean to
be well-defined.
Lemma 2 (Chernoff bound for irreducible Markov chains). Let {Xn}n∈Z≥0

be an irreducible
Markov chain over the finite state space S with transition probability matrix P , initial distribution q,
and stationary distribution π. Let f : S → R be a nonconstant function on the state space. Denote
by µ(0) =

∑
x∈S f(x)π(x) the stationary mean when f is applied, and by Ȳn = 1

n

∑n
k=1 Yk the

empirical mean, where Yk = f(Xk). Let F be a closed subset ofM∩ [µ(0),∞). Then,

P
(
Ȳn ≥ µ

)
≤ C+e

−nD(µ ‖ µ(0)), for µ ∈ F,

where D (· ‖ ·) stands for the Kullback-Leibler divergence rate in the exponential family of stochastic
matrices generated by P and f , and C+ = C+(P, f, F ) is a positive constant depending only on the
transition probability matrix P , the function f and the closed set F .

Proof of Lemma 2.
Using the standard exponential transform followed by Markov’s inequality we obtain that for any
θ ≥ 0,

P(Ȳn ≥ µ) ≤ P(enθȲn ≥ enθµ) ≤ exp

{
−n
(
θµ− 1

n
logE

[
eθ(f(X1)+...+f(Xn))

])}
.

We can upper bound the expectation from above in the following way,

E
[
eθ(f(X1)+...+f(Xn))

]
=

∑
x0,...,xn∈S

q(x0)P (x0, x1)eθf(x1) . . . P (xn−1, xn)eθf(xn)

=
∑

x0,xn∈S
q(x0)P̃nθ (x0, xn)

≤ 1

minx∈S vθ(x)

∑
x0,xn∈S

q(x0)P̃nθ (x0, xn)vθ(xn)

=
ρ(θ)n

minx∈S vθ(x)

∑
x0∈S

q(x0)vθ(x0)

≤ max
x,y∈S

vθ(y)

vθ(x)
ρ(θ)n,

where in the last equality we used the fact that vθ is a right Perron-Frobenius eigenvector of P̃θ.

From those two we obtain,

P(Ȳn ≥ µ) ≤ max
x,y∈S

vθ(y)

vθ(x)
exp {−n(θµ− Λ(θ))} ,

and if we plug in θµ = Λ̇−1(µ), which is a nonnegative real number since µ ∈ F ⊆M∩ [µ(0),∞),
we obtain,

P(Ȳn ≥ µ) ≤ max
x,y∈S

vθµ(y)

vθµ(x)
exp {−nD (µ ‖ µ(0))} ,

We assumed that F is closed, and moreover F is bounded since it is a subset of the bounded open
intervalM. Therefore, F is compact, and so Λ̇−1(F ) is compact as well. Then due to the fact that
θ 7→ vθ(x)/vθ(y) is continuous, from Lemma 2 in [31], we deduce that,

sup
θ∈Λ̇−1(F )

max
x,y∈S

vθ(y)

vθ(x)
<∞,

which we define to be the finite constant C+ of Lemma 2, and which may only depend on P, f and
F .
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Remark 4. This bound is a variant of Theorem 1 in [31], where the authors derive a Chernoff bound
under some structural assumptions on the transition probability matrix P and the function f . In
our Lemma 2, following their techniques, we derive a Chernoff bound without any assumptions,
relying though on the fact that µ lies in a closed subset of the mean parameter space.

Next, we we present an exponential martingale for Markov chains, which in turn leads to a maximal
inequality.
Lemma 3 (Exponential martingale for Markov chains). Let {Xn}n∈Z≥0

be a Markov chain over the
finite state space S with an irreducible transition matrix P and initial distribution q. Let f : S → R
be a nonconstant real-valued function on the state space. Fix θ ∈ R and define,

Mθ
n =

vθ(Xn)

vθ(X0)
exp {θ(f(X1) + . . .+ f(Xn))− nΛ(θ)} . (10)

Then {Mθ
n}n∈Z>0

is a martingale with respect to the filtration {Fn}n∈Z>0
, where Fn is the σ-field

generated by X0, . . . , Xn.

Proof.

E(Mθ
n+1 | Fn) = Mθ

n

e−Λ(θ)

vθ(Xn)
E(vθ(Xn+1)eθf(Xn+1) | Fn)

= Mθ
n

e−Λ(θ)

vθ(Xn)

∑
x∈S

vθ(x)eθf(x)P (Xn, y)

= Mθ
n

e−Λ(θ)

vθ(Xn)

∑
x∈S

P̃θ(Xn, x)vθ(x)

= Mθ
n,

where in the last equality we used the fact that vθ is a right Perron-Frobenius eigenvector of P̃θ.

Proof of Lemma 1.
Our proof extends the argument from Lemma 11 in [7], which deals with IID random variables. In
order to handle the Markovian dependence we need to use the exponential martingale for Markov
chains from Lemma 3, as well as continuity results for the right Perron-Frobenius eigenvector.

Following the proof strategy used to establish the law of the iterated logarithm, we split the range of
the union [n] into chunks of exponentially increasing sizes. Denote by α > 1 the growth factor, to
be specified later, and let nm = bαmc be the end point of the m-th chunk, with n0 = 0. An upper
bound on the number of chunks is M = dlog n/ logαe, and so we have that
n⋃
k=1

{
µ(0) ≥ Ȳk, kD

(
Ȳk
∥∥ µ(0)

)
≥ ε
}
⊆

M⋃
m=1

nm⋃
k=nm−1+1

{
µ(0) ≥ Ȳk, kD

(
Ȳk
∥∥ µ(0)

)
≥ ε
}

⊆
M⋃
m=1

nm⋃
k=nm−1+1

{
µ(0) ≥ Ȳk, D

(
Ȳk
∥∥ µ(0)

)
≥ ε

nm

}
.

Let µm = inf{µ < µ(0) : D (µ ‖ µ(0)) ≤ ε/nm}, and θm = Λ̇−1(µm) < Λ̇−1(µ(0)) = 0 so that
θmµm − Λ(θm) = D (µm ‖ µ(0)). Then,{

µ(0) ≥ Ȳk, D
(
Ȳk
∥∥ µ(0)

)
≥ ε

nm

}
⊆
{
Ȳk ≤ µm

}
=
{
eθmkȲk−kΛ(θm) ≥ ek(θmµm−Λ(θm))

}
=

{
Mθm
k ≥ vθm(Xk)

vθm(X0)
ekD(µm ‖ µ(0))

}
⊆
{
Mθm
k ≥ vθm(Xk)

vθm(X0)
e(nm−1+1)D(µm ‖ µ(0))

}
.
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At this point we use the assumption that P is (arg minx∈S f(x))-Doeblin in order to invoke Proposi-
tion 1 from [31], which in our setting states that there exists a constant C− = C−(P, f) ≥ 1 such
that,

1

C−
≤ inf
θ∈R≤0,x,y∈S

vθ(y)

vθ(x)
.

This gives us the inclusion,{
Mθm
k ≥ vθm(Xk)

vθm(X0)
e(nm−1+1)D(µm ‖ µ(0))

}
⊆
{
Mθm
k ≥ e(nm−1+1)D(µm ‖ µ(0))

C−

}
.

In Lemma 3 we have established that Mθm
k is a positive martingale, which combined with a maximal

inequality for martingales due to [40] (see Exercise 4.8.2 in [11] for a modern reference), yields that,

P

 nm⋃
k=nm−1+1

{
Mθm
k ≥ e(nm−1+1)D(µm ‖ µ(0))

C−

} ≤ C−e−(nm−1+1)D(µm ‖ µ(0))

≤ C−e−ε
nm−1+1

nm ≤ C−e−
ε
α .

To conclude, we pick the growth factor α = ε/(ε− 1), and we upper bound the number of chunks by
M ≤ dε log ne.

Appendix B Concentration Properties of Upper Confidence Bounds and
Sample Means

Lemma 4. For every arm a = 1, . . . ,K, and t ≥ 3, we have that,

Pθa
(

min
n=1,...,t

Uan(t) ≤ µ(θa)

)
≤

4eCa−
t log t

, (11)

where Ca− is the constant prescribed in Lemma 1, when the maximal inequality is applied to the
Markov chain with parameter θa.

Proof.

Pθa
(

min
n=1,...,t

Uan(t) ≤ µ(θa)

)
≤ Pθa

(
t⋃

n=1

{µ(θa) > Ȳ an and nD
(
Ȳ an
∥∥ µ(θa)

)
≥ g(t)}

)

≤ Ca−edg(t) log tee−g(t) ≤ 4Ca−e(log t)2e−g(t) =
4eCa−
t log t

,

where for the first inequality we used Equation 7 and the definition of Uan(t), while for the second
inequality we used Lemma 1.

Lemma 5. For every arm a = 1, . . . ,K, and for µ(λ) > µ(θa),

∞∑
n=1

Pθa(µ(λ) ≤ Uan(T )) ≤ g(T )

D (µ(θa) ‖ µ(λ))
+ 1 + 8σ2

θa,λ

(
Ḋ (µ(θa) ‖ µ(λ))

D (µ(θa) ‖ µ(λ))

)2

(12)

+ 2
√

2πσ2
θa,λ

√√√√Ḋ (µ(θa) ‖ µ(λ))
2

D (µ(θa) ‖ µ(λ))
3

√
g(T ),

where σ2
θ,λ = supθ∈[θa,λ] Λ̈(θ) ∈ (0,∞), and Ḋ (µ(θa) ‖ µ(λ)) = dD(µ ‖ µ(λ))

dµ |µ=µ(θa).

Proof. The proof is based on the argument given in Appendix A.2 of [7], adapted though for the
case of Markov chains. If µ(λ) ≤ Uan(T ), and Ȳ an ≤ µ(λ), then D

(
Ȳ an
∥∥ µ(λ)

)
≤ g(T )/n.

Let µx = inf{µ ≤ µ(λ) : D (µ ‖ µ(λ)) ≤ x}. This in turn implies that D
(
Ȳ an
∥∥ µ(λ)

)
≤
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D
(
µg(T )/n

∥∥ µ(λ)
)
, and using the monotonicity of µ 7→ D (µ ‖ µ(λ)) for µ ≤ µ(λ), we further

have that Ȳ an ≥ µg(T )/n. This argument shows that,

Pθa(µ(λ) ≤ Uan(T )) ≤ Pθa(µg(T )/n ≤ Ȳ an ).

Therefore,
∞∑
n=1

Pθa(µ(λ) ≤ Uan(T )) ≤ g(T )

D (µ(θa) ‖ µ(λ))
+ 1 +

∞∑
n=n0+1

Pθa(µg(T )/n ≤ Ȳ an ),

where n0 =
⌈

g(T )
D(µ(θa) ‖ µ(λ))

⌉
.

Fix n ≥ n0 + 1. Then D (µ(θa) ‖ µ(λ)) > g(T )/n, and therefore µg(T )/n > µ(θa). Furthermore
note that µg(T )/n is increasing to µ(λ) as n increases, therefore µg(T )/n lives in the closed interval
[µ(θa), µ(λ)], and we can apply Lemma 2 for the Markov chain that corresponds to the parameter θa,

Pθa(Ȳ an ≥ µg(T )/n) ≤ Ca+e−nD(µg(T )/n ‖ µ(θa)).

Thus we are left with the task of controlling the sum,
∞∑

n=n0+1

e−nD(µg(T )/n ‖ µ(θa)).

First note that by definition µg(T )/n is increasing in n, therefore D
(
µg(T )/n

∥∥ µ(θa)
)

is positive and
increasing in n, hence we can perform the following integral bound,

∞∑
n=n0+1

e−nD(µg(T )/n ‖ µ(θa)) ≤
∫ ∞

g(T )
D(µ(θa) ‖ µ(λ))

e−sD(µg(T )/s ‖ µ(θa))ds

= g(T )

∫ D(µ(θa) ‖ µ(λ))

0

1

x2
e−

g(T )
x D(µx ‖ µ(θa))dx. (13)

The function µ 7→ D (µ ‖ µ(λ)) is convex thus,

D (µ ‖ µ(λ)) ≥ D (µ(θa) ‖ µ(λ)) + Ḋ (µ(θa) ‖ µ(λ))(µ− µ(θa)),

where Ḋ (µ(θa) ‖ µ(λ)) = dD(µ ‖ µ(λ))
dµ |µ=µ(θa). Plugging in µ = µx ≥ µ(θa), for x ∈

[0, D (µ(θa) ‖ µ(λ))], we obtain

D (µ(θa) ‖ µ(λ))− x ≤ Ḋ (µ(θa) ‖ µ(λ))(µ(θa)− µx). (14)

From Lemma 8 in [31] we have that,

D (µx ‖ µ(θa)) ≥ (µx − µ(θa))2

2σ2
θa,λ

, (15)

where σ2
θa,λ

= supθ∈[θa,λ] Λ̈(θ) ∈ (0,∞).

Combining Equation 14 and Equation 15 we deduce that,

D (µx ‖ µ(θa)) ≥

(
D (µ(θa) ‖ µ(λ))− x√
2σθa,λḊ (µ(θa) ‖ µ(λ))

)2

.

Now we use this bound and break the integral in Equation 13 in two regions, I1 =
[0, D (µ(θa) ‖ µ(λ))/2] and I2 = [D (µ(θa) ‖ µ(λ))/2, D (µ(θa) ‖ µ(λ))]. In the first region we
use the fact that x ≤ D (µ(θa) ‖ µ(λ))/2 to deduce that,∫

I1

1

x2
e−

g(T )
x D(µx ‖ µ(θa))dx ≤

∫
I1

1

x2
exp

{
− g(T )

8σ2
θa,λ

x

(
D (µ(θa) ‖ µ(λ))

Ḋ (µ(θa) ‖ µ(λ))

)2
}
dx

≤
8σ2

θa,λ

g(T )

(
Ḋ (µ(θa) ‖ µ(λ))

D (µ(θa) ‖ µ(λ))

)2

.
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In the second region we use the fact that D (µ(θa) ‖ µ(λ))/2 ≤ x ≤ D (µ(θa) ‖ µ(λ)) to deduce
that, ∫

I2

1

x2
e−

g(T )
x D(µx ‖ µ(θa))dx ≤

∫
I2

4 exp
{
− (x−D(µ(θa) ‖ µ(λ)))2

2Σθa,λ

}
D (µ(θa) ‖ µ(λ))

2 dx

≤
∫ D(µ(θa) ‖ µ(λ))

−∞

4 exp
{
− (x−D(µ(θa) ‖ µ(λ)))2

2Σθa,λ

}
D (µ(θa) ‖ µ(λ))

2 dx

=
2
√

2πσ2
θa,λ√

g(T )

√√√√Ḋ (µ(θa) ‖ µ(λ))
2

D (µ(θa) ‖ µ(λ))
3 ,

where Σθa,λ =
σ2
θa,λ

Ḋ(µ(θa) ‖ µ(λ))
2
D(µ(θa) ‖ µ(λ))

g(T ) .

Lemma 6. For every arm a = 1, . . . ,K,

Pθa
(

max
n=dδte,...,t

|Ȳ an − µ(θa)| ≥ ε
)
≤ cηδt

1− η
, for δ ∈ (0, 1), ε > 0, (16)

where η = η(θθθ, ε) ∈ (0, 1), and c = c(θθθ, ε) are constants with respect to t.

Proof. Using the same technique as in the proof of Lemma 2, we have that for any θ ≥ 0 and any
η ≤ 0,

Pθa
(

max
n=dδte,...,t

|Ȳ an − µ(θa)| ≥ ε
)
≤

∞∑
n=dδte

max
x,y∈S

vaθ (y)

vaθ (x)
e−n(θ(µ(θa)+ε)−Λa(θ))

+

∞∑
n=dδte

max
x,y∈S

vaη(y)

vaη(x)
e−n(η(µ(θa)−ε)−Λa(η)),

where by Λa(θ) we denote the log-Perron-Frobenious eigenvalue generated by Pθa , and similarly by
vaθ the corresponding right Perron-Frobenius eigenvector.

By picking θ = θaε large enough, and η = ηaε small enough, we can ensure that θ(µ(θa)+ε)−Λa(θ) >
0, and η(µ(θa) − ε) − Λa(η) > 0, and so there are constants η = η(θθθ, ε) ∈ (0, 1) and c = c(θθθ, ε),
such that for any a = 1, . . . ,K,

Pθa
(

max
n=dδte,...,t

|Ȳ an − µ(θa)| ≥ ε
)
≤ c

∞∑
n=dδte

ηn ≤ cηδt

1− η
.

Appendix C Analysis of Algorithm 1

As a proxy for the regret we will use the following quantity which involves directly the number of times
each arm a ∈ {1, . . . , N} hasn’t been played, and the number of times each arm b ∈ {L+ 1, . . . ,K}
has been played,

R̃φ
φφ
θθθ (T ) =

N∑
a=1

(µ(θa)− µ(θM ))Eφφφθθθ [T −Na(T )] +

K∑
b=L+1

(µ(θM )− µ(θb))Eφφφθθθ [Nb(T )]. (17)

For the IID case R̃φφφθθθ (T ) = Rφ
φφ
θθθ (T ), and in the more general Markovian case R̃φφφθθθ (T ) is just a constant

term apart from the expected regret Rφφφθθθ (T ). Note that a feature that makes the case of multiple plays
more delicate than the case of single plays, even for IID rewards, is the presence of the first summand
in Equation 17. For this we also need to analyze the number of times each of the best N arms hasn’t
been played.
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Lemma 7. ∣∣∣Rφφφθθθ (T )− R̃φφφθθθ (T )
∣∣∣ ≤ K∑

a=1

Ra ·
∑
x∈S
|f(x)|,

where Ra = Eθa
[
inf{n ≥ 1 : Xa

n+1 = Xa
1 }
]
<∞.

We start the analysis by establishing the relation between the expected regret, Equation 1, and its
proxy, Equation 17. For this we will need the following lemma.
Lemma 8 (Lemma 2.1 in [3]). Let {Xn}n∈Z≥0

be a Markov chain on a finite state space S, with
irreducible transition probability matrix P , stationary distribution π, and initial distribution q. Let
Fn be the σ-field generated by X0, . . . , Xn. Let τ be a stopping time with respect to the filtration
{Fn}n∈Z≥0

such that E[τ ] <∞. Define N(x, n) to be the number of visits to state x from time 1 to
time n, i.e. N(x, n) =

∑n
k=1 I{Xk = x}. Then

|E[N(x, τ)]− π(x)E[τ ]| ≤ R, for x ∈ S,

where R = E[inf{n ≥ 1 : Xn+1 = X1}] <∞.

Proof of Lemma 7.
First note that,

ST =

K∑
a=1

∑
x∈S

f(x)Na(x,Na(T )).

For each a ∈ [K], using first the triangle inequality, and then Lemma 8 for the stopping time Na(T ),
we obtain, ∣∣∣∣∣∑

x∈S
f(x)(Eφφφθθθ [Na(x,Na(T ))]− πθa(x)Eφφφθθθ [Na(T )])

∣∣∣∣∣
≤
∑
x∈S
|f(x)|

∣∣∣Eφφφθθθ [Na(x,Na(T ))]− πθa(x)Eφφφθθθ [Na(T )]
∣∣∣

≤ Ra ·
∑
x∈S
|f(x)|.

Hence summing over a ∈ [K], and using the triangle inequality, we see that,∣∣∣∣∣ST −
K∑
a=1

µ(θa)Eφφφθθθ [Na(T )]

∣∣∣∣∣ ≤
K∑
a=1

Ra ·
∑
x∈S
|f(x)|.

To conclude the proof note that,

T

M∑
a=1

µ(θa)−
K∑
a=1

µ(θa)Eφφφθθθ [Na(T )]

=

N∑
a=1

µ(θa)Eφφφθθθ [T −Na(T )] + µ(θM )(M −N)− µ(θM )

K∑
a=N+1

Eφφφθθθ [Na(T )]

+

K∑
b=L+1

(µ(θM )− µ(θb))Eφφφθθθ [Nb(T )]

=

N∑
a=1

(µ(θa)− µ(θM ))Eφφφθθθ [T −Na(T )] +

K∑
b=L+1

(µ(θM )− µ(θb))Eφφφθθθ [Nb(T )],

where in the last equality we used the fact that
∑N
a=1 E

φφφ
θθθ [Na(T )]+

∑K
a=N+1 E

φφφ
θθθ [Na(T )] = TM .

Next we show that Algorithm 1 is well-defined.
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Proposition 1. For each t ≥ K we have that |Wt| ≥M , and so Algorithm 1 is well defined.

Proof of Proposition 1.
Recall that

∑
a∈[K]Na(t) = tM , and so there exists an arm a1 such that Na1(t) ≥ tM/K. Then∑

a∈[K]−{a1}Na(t) ≥ t(M − 1), and so there exists an arm a2 6= a1 such that Na2(t) ≥ t(M −
1)/(K − 1). Inductively we can see that there exist M distinct arms a1, . . . , aM such that Nai(t) ≥
t(M − i+ 1)/(K − i+ 1) ≥ t/K > δt, for i = 1, . . . ,M .

C.1 Sketch for the rest of the analysis

Due to Lemma 7, it suffices to upper bound the proxy for the expected regret given in Equation 17.
Therefore, we can break the analysis in two parts: upper bounding Eφφφθθθ [T −Na(T )], for a = 1, . . . , N ,
and upper bounding Eφφφθθθ [Nb(T )], for b = L+ 1, . . . ,K.

For the first part, we show in Appendix C that the expected number of times that an arm a ∈
{1, . . . , N} hasn’t been played, is of the order of O(log log T ).

Lemma 9. For every arm a = 1, . . . , N ,

Eφφφθθθ [T −Na(T )] ≤
4eγ2NC

⌈
2 log γ
log 1

δ

⌉
log γ

log log T + γr0 +
cγ2ηδK

(1− η)(1− ηδ)3
,

where γ, r0, η, c and C are constants with respect to T .

For the second part, if b ∈ {L+ 1, . . . ,K}, and b ∈ φt+1, then there are three possibilities:

1. Lt ⊆ [L], and |Ȳa(t)− µ(θa)| ≥ ε for some a ∈ Lt,

2. Lt ⊆ [L], and |Ȳa(t)− µ(θa)| < ε for all a ∈ Lt, and b ∈ φt+1,

3. Lt ∩ {L+ 1, . . . ,K} 6= ∅.

This means that,

Eφφφθθθ [Nb(T )] ≤M +

T−1∑
t=K

Pφφφθθθ
(
Lt ⊆ [L], and |Ȳa(t)− µ(θa)| ≥ ε for some a ∈ Lt

)
+

T−1∑
t=K

Pφφφθθθ
(
Lt ⊆ [L], and |Ȳa(t)− µ(θa)| < ε for all a ∈ Lt, and b ∈ φt+1

)
+

T−1∑
t=K

Pφφφθθθ (Lt ∩ {L+ 1, . . . ,K} 6= ∅),

and we handle each of those three terms separately.

We show that the first term is upper bounded by O(1).

Lemma 10.

T−1∑
t=K

Pφφφθθθ
(
Lt ⊆ [L], and |Ȳa(t)− µ(θa)| ≥ ε for some a ∈ Lt

)
≤ cLηδK

(1− η)(1− ηδ)
,

where c and η are constant with respect to T .

The second term is of the order of O(log T ), and it is the term that causes the overall logarithmic
regret.
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Lemma 11.
T−1∑
t=K

Pφφφθθθ
(
Lt ⊆ [L], and |Ȳa(t)− µ(θa)| < ε for all a ∈ Lt, and b ∈ φt+1

)
≤ log T + 3 log log T

D (µ(θb) ‖ µ(θM )− ε)
+ 1 + 8σ2

µ(θa),µ(θM )−ε

(
Ḋ (µ(θb) ‖ µ(θM )− ε)
D (µ(θb) ‖ µ(θM )− ε)

)2

+ 2
√

2πσ2
µ(θa),µ(θM )−ε

√√√√Ḋ (µ(θb) ‖ µ(θM )− ε)2

D (µ(θb) ‖ µ(θM )− ε)3

(√
log T +

√
3 log log T

)
,

where σ2
µ(θa),µ(θM )−ε, and Ḋ (µ(θb) ‖ µ(θM )− ε) = dD(µ ‖ µ(θM )−ε)

dµ |µ=µ(θb), are constants with
respect to T .

Finally, we show that the third term is upper bounded by O(log log T ).
Lemma 12.
T−1∑
t=K

Pφφφθθθ (Lt ∩ {L+ 1, . . . ,K} 6= ∅) ≤
4eγ2LC

⌈
2 log γ
log 1

δ

⌉
log γ

log log T + γr0 +
cγ2ηδK

(1− η)(1− ηδ)3
,

where γ, r0, η, c and C are constants with respect to T .

This concludes the proof of Theorem 1, modulo the four bounds of this subsection which are
established in the next subsection.

C.2 Proofs for the four bounds

For the rest of the analysis we define the following events which describe good behavior of the sample
means and the upper confidence bounds. For γ, r ∈ Z>1 let,

Ar =
⋂
a∈[K]

⋂
γr−1≤t≤γr+1

{
max

n=dδte,...,t
|Ȳ an − µ(θa)| < ε

}
,

Br =
⋂
a∈[N ]

⋂
γr−1≤t≤γr+1

{
min

n=1,...,dδte−1
Uan(t) > µ(θN )

}
,

Cr =
⋂
a∈[L]

⋂
γr−1≤t≤γr+1

{
min

n=1,...,dδte−1
Uan(t) > µ(θa)

}
.

Indeed, the following bounds, which rely on the concentration results of Section 3, suggest that those
events will happen with some good probability.
Lemma 13.

Pθθθ(Acr) ≤
cKηδγ

r−1

(1− η)(1− ηδ)
, Pθθθ(Bcr) ≤

4eNC
⌈

2 log γ
log 1

δ

⌉
(r − 1)γr−1 log γ

, Pθθθ(Ccr) ≤
4eLC

⌈
2 log γ
log 1

δ

⌉
(r − 1)γr−1 log γ

,

where η ∈ (0, 1), c and C are constants with respect to r.

Proof. The first bound follows directly from Equation 16 and a union bound.

For the second bound, let p =
⌈

2 log γ
log 1

δ

⌉
, so that

⌊
γr−1

δp

⌋
≥ γr+1. For i = 0, . . . , p let ti =

⌊
γr−1

δi

⌋
,

and define,

Di =
⋂
a∈[N ]

{
min

n=1,...,ti
Uan(t) > µ(θa)

}
.

From Equation 11 we see that,

Pθθθ(Dc
i ) ≤

4eN maxa∈[N ] C
a
−

ti log ti
≤

4eN maxa∈[N ] C
a
−

(r − 1)γr−1 log γ
,
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where Ca− is the constant from Lemma 1.

Fix a ∈ [N ], and γr−1 ≤ t ≤ γr+1. There exists i ∈ {0, . . . , p− 1} such that ti ≤ t ≤ ti+1, and so
ti > δti − 1 ≥ δt− 1, which gives that ti ≥ dδte − 1. On Di, due to Equation 8, we have that,

min
n=1,...,dδte−1

Uan(t) ≥ min
n=1,...,dδte−1

Uan(ti) ≥ min
n=1,...,ti

Uan(ti) > µ(θa) ≥ µ(θN ).

Therefore,

Pθθθ(Bcr) ≤
p−1∑
i=0

Pθθθ(Dc
i ) ≤

4eNpmaxa∈[N ] C
a
−

(r − 1)γr−1 log γ
.

The third bound is established along the same lines.

In order to establish Lemma 9 we need the following lemma which states that, on Ar ∩Br, an event
of sufficiently large probability according to Lemma 13, all the best N arms are played.
Lemma 14 (Lemma 5.3 in [2]). Fix γ ≥ d(1 −Kδ)−1e + 2, and let r0 = dlogγ

2K
1−Kδ−γ−1 e + 2.

For any r ≥ r0, on Ar ∩Br we have that [N ] ⊂ φt+1 for all γr ≤ t ≤ γr+1.

Proof of Lemma 9.

Eφφφθθθ [T −Na(T )] ≤ γr0 +

dlogγ(T−1)e−1∑
r=r0

∑
γr≤t≤γr+1

Pφφφθθθ (a 6∈ φt+1)

≤ γr0 +

dlogγ(T−1)e−1∑
r=r0

∑
γr≤t≤γr+1

(Pθθθ(Acr) + Pθθθ(Bcr))

≤ γr0 +

dlogγ(T−1)e−1∑
r=r0

 cKγr+1ηδγ
r−1

(1− η)(1− ηδ)
+

4eγ2NC
⌈

2 log γ
log 1

δ

⌉
(r − 1) log γ

 ,

where the second inequality follows from Lemma 14, and the third from Lemma 13. Now we use a
simple logarithmic upper bound on the harmonic number to obtain,

dlogγ(T−1)e−1∑
r=r0

1

r − 1
≤
dlogγ(T−1)e−1∑

r=3

1

r − 1
≤ log logγ T ≤ log log T.

Finally, we can upper bound the other summand by a constant, with respect to T , in the following
way,

dlogγ(T−1)e−1∑
r=r0

γr−1ηδγ
r−1

≤
∞∑
k=1

kηδk =
ηδ

(1− ηδ)2
.

Proof of Lemma 10.
Using Equation 16 it is straightforward to see that

Pφφφθθθ
(
Lt ⊆ [L], and |Ȳa(t)− µ(θa)| ≥ ε for some a ∈ Lt

)
≤ cLηδt

1− η
,

and the conclusion follows by summing the geometric series.

Proof of Lemma 11.
Assume that Lt ⊆ [L], and |Ȳa(t)−µ(θa)| < ε for all a ∈ Lt, and b ∈ φt+1. Then it must be the case
that b ≡ t+ 1 (mod K), b 6∈ Lt, and Ub(t) > mina∈Lt Ȳa(t) > mina∈Lt µ(θa)− ε ≥ µ(θM )− ε.
This shows that,

Pφφφθθθ
(
Lt ⊆ [L], and |Ȳa(t)− µ(θa)| < ε for all a ∈ Lt, and b ∈ φt+1

)
≤ Pφφφθθθ (b ∈ φt+1, and Ub(t) > µ(θM )− ε).
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Furthermore,

T−1∑
t=K

Pφφφθθθ (b ∈ φt+1, and Ub(t) > µ(θM )− ε)

=

T−1∑
t=K

M+T−K∑
n=M+1

Pφφφθθθ (τ bn = t+ 1, and U bn(t) > µ(θM )− ε)

≤
T−1∑
t=K

M+T−K∑
n=M+1

Pφφφθθθ (τ bn = t+ 1, and U bn(T ) > µ(θM )− ε)

=

M+T−K∑
n=M+1

T−1∑
t=K

Pφφφθθθ (τ bn = t+ 1, and U bn(T ) > µ(θM )− ε)

≤
M+T−K∑
n=M+1

Pθb(U bn(T ) > µ(θM )− ε),

where in the first inequality we used Equation 8. Now the conclusion follows from Equation 12.

In order to establish Lemma 12 we need the following lemma which states that, on Ar ∩Cr, an event
of sufficiently large probability according to Lemma 13, only arms from {1, . . . , L} have been played
at least dδte times and have a large sample mean.

Lemma 15 (Lemma 5.3 B in [2]). Fix γ ≥ d(1−Kδ)−1e+ 2, and let r0 = dlogγ
2K

1−Kδ−γ−1 e+ 2.
For any r ≥ r0, on Ar ∩ Cr we have that Lt ⊆ [L] for all γr ≤ t ≤ γr+1.

Proof of Lemma 12.
From Lemma 15 we see that,

T−1∑
t=K

Pφφφθθθ (Lt ∩ {L+ 1, . . . ,K} 6= ∅) ≤ γr0 +

dlogγ(T−1)e−1∑
r=r0

∑
γr≤t≤γr+1

(Pθθθ(Acr) + Pθθθ(Ccr)).

The rest of the calculations are similar with the proof of Lemma 9.

Proof of Corollary 1.
In the finite-time regret bound of Theorem 1 we divide by log T , let T go to∞, and then let ε go to 0
in order to get,

lim sup
T→∞

Rφ
φφ
θθθ (T )

log T
≤

K∑
b=L+1

µ(θM )− µ(θb)

D (µ(θb) ‖ µ(θM ))
.

The conclusion now follows by using the asymptotic lower bound from Equation 3.

Proof of Theorem 2.
The proof of Theorem 2 follows along the lines the proof of Theorem 1, by replacing instances of
entries of the right Perron-Frobenius eigenvector vθ(x) with one, and is thus omitted.

Appendix D General Asymptotic Lower Bound

Recall from Subsection 2.1 the general one-parameter family of Markov chains {Pθ : θ ∈ Θ}, where
each Markovian probability law Pθ is characterized by an initial distribution qθ and a transition
probability matrix Pθ. For this family we assume that,

Pθ is irreducible for all θ ∈ Θ. (18)
Pθ(x, y) > 0 ⇒ Pλ(x, y) > 0, for all θ, λ ∈ Θ, x, y ∈ S. (19)

qθ(x) > 0 ⇒ qλ(x), for all θ, λ ∈ Θ, x ∈ S. (20)
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In general it is not necessary that the parameter space Θ is the whole real line, but it is assumed to
satisfy the following denseness condition. For all λ ∈ Θ and all δ > 0, there exists λ′ ∈ Θ such that,

µ(λ) < µ(λ′) < µ(λ) + δ. (21)

Furthermore, the Kullback-Leibler divergence rate is assumed to satisfy the following continuity
property. For all ε > 0, and for all θ, λ ∈ Θ such that µ(λ) > µ(θ), there exists δ > 0 such that,

µ(λ) < µ(λ′) < µ(λ) + δ ⇒ |D (θ ‖ λ)−D (θ ‖ λ′)| < ε. (22)

An adaptive allocation rule φφφ is called uniformly good if,

Rφ
φφ
θθθ (T ) = o(Tα), for all θθθ ∈ ΘK , and all α > 0.

Under those conditions [3] establish the following asymptotic lower bound.
Theorem 3 (Theorem 3.1 from [3]). Assume that the one-parameter family of Markov chains
on the finite state space S, together with the reward function f : S → R, satisfy condi-
tions (18), (19), (20), (21), and (22). Let φφφ be a uniformly good allocation rule. Fix a parameter
configuration θθθ ∈ ΘK , and without loss of generality assume that,

µ(θ1) ≥ . . . ≥ µ(θN ) > µ(θN+1) . . . = µ(θM ) = . . . = µ(θL) > µ(θL+1) ≥ . . . ≥ µ(θK).

Then for every b = L+ 1, . . . ,K,

1

D (θb ‖ θM )
≤ lim inf

T→∞

Eφφφθθθ [Nb(T )]

log T
.

Consequently,
K∑

b=L+1

µ(θM )− µ(θb)

D (θb ‖ θM )
≤ lim inf

T→∞

Rφ
φφ
θθθ (T )

log T
.

Lower bounds on the expected regret of multi-armed bandit problems are established using a change
of measure argument, which relies on the adaptive allocation rule being uniformly good. [20] gave
the prototypical change of measure argument, for the case of IID rewards, and [3] extended this
technique for the case of Markovian rewards. Here we give an alternative simplified proof using the
data processing inequality, an idea introduced in [17, 9] for the IID case.

We first set up some notation. Denote by FT the σ-field generated by the random variables
φ1, . . . , φT , {X1

n}
N1(T )
n=0 , . . . , {XK

n }
NK(T )
n=0 , and let Pφφφθθθ |FT be the restriction of the probability dis-

tribution Pφφφθθθ on FT . For two probability distributions P and Q over the same measurable space we
define the Kullback-Leibler divergence between P and Q as

D (P ‖ Q) =

{
EP

[
log d P

dQ

]
, if P� Q,

∞, otherwise,

where d P
dQ denotes the Radon-Nikodym derivative, when P is absolutely continuous with respect to Q.

Note that we have used the same notation as for the Kullback-Leibler divergence rate between two
Markov chains, but it should be clear from the arguments whether we refer to the divergence or the
divergence rate. For p, q ∈ [0, 1], the binary Kullback-Leibler divergence is denoted by

D2 (p ‖ q) = p log
p

q
+ (1− p) log

1− p
1− q

.

The following lemma, from [29], will be crucial in establishing the lower bound.
Lemma 16 (Lemma 1 in [29]). Let θθθ,λλλ ∈ ΘK be two parameter configurations. Let τ be a stopping
time with respect to (Ft)t∈Z>0

, with Eφφφθθθ [τ ], Eφφφλλλ[τ ] <∞. Then

D
(
Pφφφθθθ |Fτ

∥∥∥ Pφφφλλλ |Fτ
)
≤

K∑
a=1

D (qθa ‖ qλa) +

K∑
a=1

(
Eφφφθθθ [Na(τ)] +Rθa

)
D (θa ‖ λa),

where Rθa = Eθa
[
inf{n ≥ 1 : Xa

n+1 = Xa
1 }
]
<∞, the first summand is finite due to (20), and the

second summand is finite due to (19).
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Proof of Theorem 3.
Fix b ∈ {L+ 1, . . . ,K}, and ε > 0. Due to Equation 21 and Equation 22, there exists λ ∈ Θ such
that

µ(θM ) < µ(λ), and |D (θb ‖ θM )−D (θb ‖ λ)| < ε.

We consider the parameter configuration λλλ = (λ1, . . . , λK) given by,

λa =

{
θa, if a 6= b,

λ, if a = b.

Using Lemma 16 we obtain,

D
(
Pφφφθθθ |FT

∥∥∥ Pφφφλλλ |FT
)
≤ D (qθb ‖ qλ) +RθbD (θb ‖ λ) + Eφφφθθθ [Nb(T )]D (θb ‖ λ).

From the data processing inequality, see the book of [10], we have that for any event E ∈ FT ,

D2

(
Pφφφθθθ (E)

∥∥∥ Pφφφλλλ(E)
)
≤ D

(
Pφφφθθθ |FT

∥∥∥ Pφφφλλλ |FT
)
.

We select E = {Nb(T ) ≥
√
T}. Then using Markov’s inequality, and the fact that φφφ is uniformly

good we obtain for any α > 0,

Pφφφθθθ (E) ≤
Eφφφθθθ [Nb(T )]
√
T

=
o(Tα)√

T
, Pφφφλλλ(Ec) ≤

Eφφφλλλ[T −Nb(T )]

T −
√
T

=
o(Tα)

T −
√
T
.

Using those two inequalities we see that,

lim inf
T→∞

D2

(
Pφφφθθθ (E)

∥∥∥ Pφφφλλλ(E)
)

log T
= lim inf

T→∞

log 1

Pφφφ
λλλ

(Ec)

log T
≥ lim
T→∞

log T−
√
T

o(Tα)

log T
= 1.

Therefore,

lim inf
T→∞

Eφφφθθθ [N b(T )]

log T
≥ 1

D (θb ‖ λ)
≥ 1

D (θb ‖ θM ) + ε
,

and the first part of Theorem 3 follows by letting ε go to 0. The second part follows from Lemma 7,
and Equation 17.
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