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A Example of cartesian spherical harmonics

The spherical harmonics expansion f∞ with Cartesian spherical harmonics Yl,m is written as follows:

f∞(d) =

∞∑
l=0

l∑
m=−l

cl,mYl,m(ω(d)), ω(d) = (sin θ cosφ, sin θ sinφ, cos θ), (1)

where d = (θ, φ) ∈ S2, cl,m ∈ R is a constant. Examples of Yl,m given (l,m) are shown below:
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B Definition of G and G−1

We define the conversion from Cartesian coordinates to the surface of the sphere G : R3 → S2 as

G(x, y, z) = (arctan
y

x
, arctan

√
x2 + y2

z2
) (2)

We define the conversion from spherical coordinates to Cartesian coordinates G−1 : R× S2 → R3

as
G−1(r, θ, φ) = (r sin θ cosφ, r sin θ sinφ, r cos θ). (3)

C Visualization of single view reconstruction

We provide an additional visualization of the single-view reconstruction results of the rifle, airplane,
chair, and table categories from ShapeNet [1] in Figure 1.
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Figure 1: The additional visualization of the single view reconstruction results.

D Visualization of primitives

We provide an additional visualization of the primitives in Figures 2, 3, and 4 for the plane, chair, and
rifle categories from ShapeNet [1], respectively.

E Visualization of differentiable shape and surface representations

NSD provides multiple differentiable shape and surface representations that are available both during
training and inference: mesh, surface points, normal, indicator function (signed distance function),
and texture. They are visualized in Figure 5.

Normal estimation As shown in Figure 5, NSD can also estimate differentiable normal vectors. Un-
like methods using mesh templates, the proposed approach can derive normals at arbitrary resolution.
Following [2], we derive the surface normal of the ith primitive n̂i can be derived:

n̂i(p̂; ti) = −∂Ôi(p̂; ti)

∂p̂
, (4)

where p̂ ∈ P̂i is the predicted surface point, Ôi is the indicator function, and ti is the translation
vector of the ith primitive. Collective surface normal vectors n̂ can be defined as follows:

n̂ =
⋃
i

{n̂i(p̂; ti)| ∀j ∈ [N \ i], Ôj(P̂i(d; ti); ti) < τs, d ∈ {dk}Kk=1}, (5)

where N is the number of primitives, and τs is a hyperparameter for the threshold of the isosurface
indicator value. It should be noted that differentiable normal estimation during training by the above
approach is possible through the implicit and explicit representations, whereas the approach in [2]
can extract normal vectors only at inference time.
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Figure 2: Additional visualization of the primitives for the airplane category.

Figure 3: Additional visualization of the primitives for the chair category.
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Figure 4: Additional visualization of the primitives for the rifle category.

Figure 5: Differentiable shape and surface representations of NSD.
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mean std
Superquadrics [4] 0.042 0.030

BSP-Net (convex) [3] 0.070 0.344
Proposed (star domain) 0.154 0.351

Table 1: Mean and standard deviation of discrete Gaussian curvature [5].

Figure 6: Randomly sampled primitives: superquadrics [4], convex [3], and proposed (star domain).

F Analysis on expressive power of primitive shapes

We quantitatively evaluate the expressive power of NSD compared with other primitives in previous
studies: convexes [3] and superquadrics [4]. We evaluate the expressive power by measuring the
complexity of the inferred primitive shapes. To quantify the complexity of the shape, we evaluate the
discrete Gaussian curvature [5]. We use the airplane and the chair categories from ShapeNet [1] in this
evaluation. For NSD, we use N = 10 for the number of primitives. The mean and standard deviation
of the curvature measure are shown in Table 1. A larger mean value indicates that primitive shapes
have more complex surfaces in terms of unevenness, and a larger standard deviation indicates that
primitives have more diverse shapes. It can be seen that NSD has larger mean and standard deviation
than the methods in previous studies. This quantitatively demonstates that NSD has more expressive
power, as it learns more complex and diverse primitive shapes. Randomly sampled primitives from
the airplane and chair categories are shown in Figure 6.

G Definition of the overlap regularizer

We adapt the decomposition loss proposed in [6] as an off-the-shelf overlap regularizer. We note that
we use the L1 norm instead of the L2 norm:

Ldecomp(Θ) = Ex∼R3 |ReLU(
∑
i

Ôi(x; ti)− τr)|, (6)

where τr is a hyperparameter that controls the amount of overlap.

H Formulation of the overlap count

We quantify primitive overlap by counting the number of 3D points inside more than one primitive as
follows:

Overlap = Ex∼R31(
∑
i

1(Ôi(x; ti) ≥ τs) > 1). (7)

1 is an indicator function.
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