
We would like to thank all referees for their appreciation of our results and the useful feedback. Below is our reply.1

Reviewer 1: Thank you for pointing us to the relevant references. Si et al. was made available only in July 2020 during2

ICML, while we cited Hu et al. as Reference [17] in our paper. Our setting (including the loss function, the construction3

of the nominal distribution and the ambiguity set) is clearly different from Faury et al. and Si et al. Results from4

Section 5.3 of Hu et al. focus solely on loss functions which are linear in Y . On the contrary, our loss function is linear5

in T (Y ), where the sufficient statistics T can be a nonlinear map. Examples of exponential family of distributions with6

nonlinear T are Gaussian, Gamma and Beta distributions. The results from Hu et al. thus are not directly applicable to7

robustify MLE problems. Our proof is also novel: it invokes duality results on the expectation parameter space.8

To our best knowledge, Faury et al. and Si et al. provide convergence results for the objective value, not for the solution.9

We, however, focus on the convergence of our solution, and Theorem 4.3 shows that our solution is consistent. Results10

that provide the rate of convergence for DRO solution is very scarce in the current literature (we are only aware of11

(arXiv:1906.01614)) because it is significantly harder to prove. This extension goes beyond the scope of this paper.12

In many practical applications, the covariate space X is categorical/ordinal, thus Nc can be greater than 1. Moreover,13

model (5) needs only (p+ 1)C parameters, not C + pC parameters as the reviewer thought (p is the dimension of Θ).14

We agree that the dependence on N should be made explicit in Proposition 4.2. We update Table 2 below with values of15

n, N and m. We will change the covariate space from Rn to Rd as you kindly recommended. Thank you!16

Section 5 demonstrates the generality and power of our proposed approach. Under study are two popular applications of17

model estimation with exponential family of distributions: Poisson regression (see Example 3.4) is when Y |X follows18

a Poisson distribution, and logistic regression (see Example 3.5) is when Y |X follows a Bernoulli distribution.19

Reviewer 2: We wholeheartedly agree with you that it is interesting to handle the contamination in the X space. We20

tried it, and we encountered two technical difficulties: first, the log-partition function Ψ is convex; second, there are21

multiplicative terms between X and Y . Maximizing over the X space to find the worst-case covariate is thus difficult.22

Even though this is a useful extension, providing sound and rigorous mathematical treatment requires significant23

breakthroughs in non-convex programming; or we need to approach this problem from a different perspective. One24

can think of perturbing each x̂c in a finite set but that would lead to trivial (and uninteresting) modifications of the25

constraints. We will discuss about the covariate contamination in the concluding remarks.26

We will add relevant references from the robust statistics literature into the paper. Thank you for your suggestion!27

About the Poisson pmf: we use the natural parameter, while you are using the expectation parameter to characterize the28

Poisson distribution. Both are actually equivalent reparametrization. We will clarify this notation in the revised version.29

Reviewer 3: 1) Thank you for the suggestion about the joint convergence. For brevity, we present here only the case30

when the nominal distribution is set using Example 2.2. Complete characterization of Z is also provided.31

Lemma (Asymptotic convergence). Suppose that |X | = C with P(X = x̂c) > 0. Let θc = λ(w0, x̂c) and P̂ be defined32

as in Example 2.2. Let Vc = DcCovf(·|θc)(T (Y ))D>c , where Dc = J(∇Ψ)−1(Ef(·|θc)[T (Y )]) and J denotes the33

Jacobian operator. Then the following joint convergence holds34 (
N1 ×KL(f(·|θ1) ‖ f(·|θ̂1)), . . . , NC ×KL(f(·|θC) ‖ f(·|θ̂C))

)> d.−→ Z as N →∞,
where Z = (Z1, . . . , ZC)> with Zc = 1

2R
>
c ∇2Ψ(θc)Rc, Rc are independent and Rc ∼ N (0, Vc).35

2) By Proposition 4.1, nonparametric KL is equivalent to setting ρc = 0 and tune only with ε > 0. We rerun36

the experiment for logistic regression and update Table 2 as below: the column ‘KL’ reports the performance of37

nonparametric KL with ε ∈ [10−4, 10] with 10 logarithmic scale points. Intuitively, ρc should depend on x̂c, but the38

dependence is dictated by the unknown value w0. Choosing ρc based on x̂c is thus unrealistic.39

Reviewer 4: Regarding the weakness: overfitting is a severe problem when the number of i.i.d. samples is relatively40

small compared to the dimension. This weakness (the improvement decreases as N gets large) is thus pertinent to all41

methods aiming to combat overfitting, including regularization and DRO, and not just to our proposed method.42

AUC CCR
Dataset DRO KL L1 L2 MLE DRO KL L1 L2 MLE
australian (N = 690, n = 14) 92.74 92.62 92.73 92.71 92.61 85.75 85.72 85.52 85.60 85.72
banknote (N = 1372, n = 4) 98.46 98.46 98.43 98.45 98.45 94.31 94.32 94.16 94.35 94.32
climate (N = 540, n = 18) 94.30 82.77 94.85 94.13 82.76 95.04 93.89 94.85 94.83 93.89
german (N = 1000, n = 19) 75.75 75.68 75.74 75.74 75.67 73.86 74.05 73.82 73.70 74.05
haberman (N = 306, n = 3) 66.86 67.21 69.19 68.17 67.20 73.83 73.80 73.20 73.18 73.80
housing (N = 506, n = 13) 76.24 75.73 75.37 75.57 75.73 91.65 91.70 92.68 92.65 91.70
ILPD (N = 583, n = 10) 74.01 73.66 73.56 73.77 73.66 71.11 71.07 71.68 71.79 71.07
mammo. (N = 830n = 5) 87.73 87.72 87.70 87.68 87.71 81.00 81.20 80.99 80.94 81.20

Table 2: Average area under the curve (AUC) and correct classification rates (CCR) on UCI datasets (m = 1).


