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Abstract

We consider the parameter estimation problem of a probabilistic generative model
prescribed using a natural exponential family of distributions. For this problem,
the typical maximum likelihood estimator usually overfits under limited training
sample size, is sensitive to noise and may perform poorly on downstream predic-
tive tasks. To mitigate these issues, we propose a distributionally robust maximum
likelihood estimator that minimizes the worst-case expected log-loss uniformly
over a parametric Kullback-Leibler ball around a parametric nominal distribution.
Leveraging the analytical expression of the Kullback-Leibler divergence between
two distributions in the same natural exponential family, we show that the min-
max estimation problem is tractable in a broad setting, including the robust train-
ing of generalized linear models. Our novel robust estimator also enjoys statistical
consistency and delivers promising empirical results in both regression and clas-
sification tasks.

1 Introduction

We are interested in the relationship between a response variable Y and a covariate X governed by
the generative model

Y |X = x ∼ f
(
· |λ(w0, x)

)
, (1)

where λ is a pre-determined function that maps the weight w0 and the covariate X to the parameter
of the conditional distribution of Y given X . The weight w0 is unknown and is the main quantity
of interest to be estimated. Throughout this paper, we assume that the distribution f belongs to
the exponential family of distributions. Given a ground measure ν on Y , the exponential family is
characterized by the density function

f(y|θ) = h(y) exp
(〈
θ, T (y)

〉
−Ψ(θ)

)
with respect to ν, where

〈
· , ·
〉

denotes the inner product, θ is the natural parameters, Ψ is the log-
partition function and T is the sufficient statistics. The space of natural parameters is denoted by
Θ =

{
θ :
∫
h(y) exp(

〈
θ, T (y)

〉
) <∞

}
⊆ Rp. We assume that the exponential family of distribu-

tions is regular, hence Θ is an open set, and T1(y), . . . , Tp(y) are affinely independent [3, Chapter 8].

The generative setting (1) encapsulates numerous models which are suitable for regression and clas-
sification [11]. It ranges from logistic regression for classification [18], Poisson counting regres-
sion [17], log-linear models [9] to numerous other generalized linear models [11].
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Given data {(x̂i, ŷi)}i=1,...,N which are assumed to be independently and identically distributed
(i.i.d.) following the generative model (1), we want to estimate the true value of w0 that dictates (1).
If we use P̂emp = N−1

∑N
i=1 δ(x̂i,ŷi) to denote the empirical distribution supported on the training

data, and define `λ as the log-loss function with the parameter mapping λ

`λ(x, y, w) = Ψ(λ(w, x))−
〈
T (y), λ(w, x)

〉
, (2)

then the maximum likelihood estimation (MLE) produces an estimate wMLE by solving the follow-
ing two equivalent optimization problems

wMLE = arg min
w∈W

∑N
i=1

1
N

(
Ψ(λ(w, x̂i))−

〈
T (ŷi), λ(w, x̂i)

〉)
(3a)

= arg min
w∈W

EP̂emp [`λ(X,Y,w)]. (3b)

The popularity of MLE can be attributed to its consistency, asymptotic normality and efficiency [35,
Section 5]. Unfortunately, this estimator exhibits several drawbacks in the finite sample regime, or
when the data carry high noise and may be corrupted. For example, the ML estimator for the Gaus-
sian model recovers the sample mean, which is notoriously susceptible to outliers [28]. The MLE
for multinomial logistic regression yields over-fitted models for small and medium sized data [10].

Various strategies can be utilized to counter these adverse effects of the MLE in the limited data
regime. The most common approach is to add a convex penalty term such as a 1-norm or 2-norm of
w into the objective function of problem (3a) to obtain different regularization effects, see [27, 22]
for regularized logistic regression. However, this approach relies on strong prior assumptions, such
as the sparsity of w0 for the 1-norm regularization, which may rarely hold in reality. Recently,
dropout training has been used to prevent overfit and improve the generalization of the MLE [32,
36, 37]. Specific instances of dropout have been shown to be equivalent to a 2-norm regularization
upon a suitable transformation of the inputs [36, Section 4]. Another popular strategy to regularize
problem (3a) is by reweighting the samples instead of using a constant weight 1/N when calculating
the loss. This approach is most popular in the name of weighted least-squares, which is a special
instance of MLE problem under the Gaussian assumption with heteroscedastic noises.

Distributionally robust optimization (DRO) is an emerging scheme aiming to improve the out-of-
sample performance of the statistical estimator, whereby the objective function of problem (3b)
is minimized with respect to the most adverse distribution Q in some ambiguity set. The DRO
framework has produced many interesting regularization effects. If the ambiguity set is defined using
the Kullback-Leibler (KL) divergence, then we can recover an adversarial reweighting scheme [23,
6], a variance regularization [25, 14], and adaptive gradient boosting [8]. DRO models using the
KL divergence is also gaining recent attraction in many machine learning learning tasks [15, 31]
and in data-driven optimization [4, 34]. Another popular choice is the Wasserstein distance function
which has been shown to have strong connections to regularization [30, 21], and has been used in
training robust logistic regression classifiers [29, 7]. Alternatively, the robust statistics literature
also consider the robustification of the MLE problem, for example, to estimate a robust location
parameter [20].

Existing efforts using DRO typically ignore, or have serious difficulties in exploiting, the available
information regarding the generative model (1). While existing approaches using the Kullback-
Leibler ball around the empirical distribution completely ignore the possibility of perturbing the
conditional distribution, the Wasserstein approach faces the challenge of elicitating a sensible ground
metric on the response variables. For a concrete example, if we consider the Poisson regression
application, then Y admits values in the space of natural numbers N, and deriving a global metric on
N that carries meaningful local information is nearly impossible because one unit of perturbation of
an observation with ŷi = 1 does not carry the same amount of information as perturbing ŷi = 1000.
The drawbacks of the existing methods behoove us to investigate a novel DRO approach that can
incorporate the available information on the generative model in a systematic way.

Contributions. We propose the following distributionally robust MLE problem

min
w∈W

max
Q∈B(P̂)

EQ
[
`λ(X,Y,w)

]
, (4)

which is a robustification of the MLE problem (3b) for generative models governed by an exponen-
tial family of distributions.
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The novelty in our approach can be summarized as follows.

• We advocate a new nominal distribution which is calibrated to reflect the available parametric
information, and introduce a Kullback-Leibler ambiguity set that allows perturbations on both
the marginal distribution of the covariate and the conditional distributions of the response.
• We show that the min-max estimation problem (4) can be reformulated as a single finite-

dimensional minimization problem. Moreover, this reformulation is a convex optimization prob-
lem in broadly applicable settings, including the training of many generalized linear models.
• We demonstrate that our approach can recover the adversarial reweighting scheme as a special

case, and it is connected to the variance regularization surrogate. Further, we prove that our
estimator is consistent and provide insights on the practical tuning of the parameters of the am-
biguity set. We also shed light on the most adverse distribution in the ambiguity set that incurs
the extremal loss for any estimate of the statistician.

Technical notations. The variables (X,Y ) admit values in X × Y ⊆ Rn × Rm, andW is a finite-
dimensional set. The mapping λ :W ×X → Θ ⊆ Rp is jointly continuous, and

〈
· , ·
〉

denotes the
inner product in Rp. For any set S,M(S) is the space of all probability measures with support on
S. We use

p.−→ to denote convergence in probability, and d.−→ to denote convergence in distribution.
All proofs are relegated to the appendix.

2 Distributionally Robust Estimation with a Parametric Ambiguity Set

We delineate in this section the ingredients of our distributionally robust MLE using parametric
ambiguity set. Since the log-loss function is pre-determined, we focus solely on eliciting a nominal
probability measure and the neighborhood surrounding it, which will serve as the ambiguity set.

While the typical empirical measure P̂emp may appear at first as an attractive option for the nominal
measure, P̂emp does not reflect the parametric nature of the conditional measure of Y given X . Con-
sequently, to robustify the MLE model, we need a novel construction of the nominal distribution P̂.

Before proceeding, we assume w.l.o.g. that the dataset {(x̂i, ŷi)}i=1,...,N consists ofC ≤ N distinct
observations of X , each value is denoted by x̂c for c = 1, . . . , C, and the number of observations
with the same covariate value x̂c is denoted by Nc. This regrouping of the data by x̂c typically
enhances the statistical power of estimating the distribution conditional on the event X = x̂c.

We posit the following parametric nominal distribution P̂ ∈ M(X × Y). This distribution is fully
characterized by (p + 1)C parameters: a probability vector p̂ ∈ RC+ whose elements sum up to 1
and a vector of nominal natural parameters θ̂ ∈ ΘC ⊆ (Rp)C . Mathematically, P̂ satisfies{

P̂({x̂c} ×A) = P̂X({x̂c})P̂Y |x̂c
(A) ∀x̂c,∀A ⊆ Y measurable

P̂X =
∑C
c=1 p̂cδx̂c

, P̂Y |x̂c
∼ f( · |θ̂c) ∀c.

(5)

The first equation indicates that the nominal measure P̂ can be decomposed into a marginal distribu-
tion of the covariatesX and a collection of conditional measures of Y givenX using the definition of
the conditional probability measure [33, Theorem 9.2.2]. The second line stipulates that the nominal
marginal distribution P̂X of the covariates is a discrete distribution supported on x̂c, c = 1, . . . , C.
Moreover, for each c, the nominal conditional distribution of Y given X = x̂c is a distribution in
the exponential family with parameter θ̂c. Notice that the form of P̂ in (5) is chosen to facilitate the
injection of parametric information θ̂c into the nominal distribution, and it is also necessary to tie P̂
to the MLE problem using the following notion of MLE-compatibility.

Definition 2.1 (MLE-compatible nominal distribution). A nominal distribution P̂ of the form (5)
is MLE-compatible with respect to the log-loss function `λ if the optimal solution ŵ =
arg minw∈W EP̂[`λ(X,Y,w)] coincides with the estimator wMLE that solves (3a).

Definition 2.1 indicates that P̂ is compatible for the MLE problem if the MLE solution wMLE is
recovered by solving problem (3b) where the expectation is now taken under P̂. Therefore, MLE-
compatibility implies that P̂ and P̂emp are equivalent in the MLE problem.
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The next examples suggest two possible ways of calibrating an MLE-compatible P̂ of the form (5).

Example 2.2 (Compatible nominal distribution I). If P̂ is chosen of the form (5) with p̂c = Nc/N

and θ̂c = (∇Ψ)−1
(
(Nc)

−1∑
x̂i=x̂c

T (ŷi)
)
∈ Θ for all c, then P̂ is MLE-compatible.

Example 2.3 (Compatible nominal distribution II). If P̂ is chosen of the form (5) with p̂c = Nc/N

and θ̂c = λ(wMLE , x̂c) for all c, where wMLE solves (3a), then P̂ is MLE-compatible.

We now detail the choice of the dissimilarity measure which is used to construct the neighborhood
surrounding the nominal measure P̂. For this, we will use the Kullback-Leiber divergence.
Definition 2.4 (Kullback-Leibler divergence). Suppose that P1 is absolutely continuous with re-
spect to P2, the Kullback-Leibler (KL) divergence from P1 to P2 is defined as KL(P1 ‖ P2) ,
EP1 [log(dP1/dP2)], where dP1/dP2 is the Radon-Nikodym derivative of P1 with respect to P2.

The KL divergence is an ideal choice in our setting for numerous reasons. Previously, DRO prob-
lems with a KL ambiguity set often result in tractable finite-dimensional reformulations [5, 19, 6].
More importantly, the manifold of exponential family of distributions equipped with the KL diver-
gence inherits a natural geometry endowed by a dually flat and invariant Riemannian structure [1,
Chapter 2]. Furthermore, the KL divergence between two distributions in the same exponential
family admits a closed form expression [2, 1].
Lemma 2.5 (KL divergence between distributions from exponential family). The KL divergence
from Q1∼f( · |θ1) to Q2∼f( · |θ2) amounts to KL(Q1 ‖ Q2)=

〈
θ1−θ2,∇Ψ(θ1)

〉
−Ψ(θ1)+Ψ(θ2).

Using the above components, we are now ready to introduce our ambiguity set B(P̂) as

B(P̂),

Q∈M(X×Y) :

∃QX ∈M(X ), ∃θc ∈ Θ such that QY |x̂c
∼ f( · |θc) ∀c

Q({x̂c} ×A)=QX({x̂c})QY |x̂c
(A) ∀c,∀A ⊆ Y measurable

KL(QY |x̂c
‖ P̂Y |x̂c

) ≤ ρc ∀c
KL(QX ‖ P̂X) + EQX

[
∑C
c=1 ρc1x̂c

(X)] ≤ ε

 (6)

parametrized by a marginal radius ε and a collection of the conditional radii ρc. Any distribution
Q ∈ B(P̂) can be decomposed into a marginal distribution QX of the covariate and an ensemble of
parametric conditional distributions QY |x̂c

∼ f( · |θc) at every event X = x̂c. The first inequality
in (6) restricts the parametric conditional distribution QY |x̂c

to be in the ρc-neighborhood from the
nominal P̂Y |x̂c

prescribed using the KL divergence, while the second inequality imposes a similar
restriction for the marginal distribution QX . One can show that for any conditional radii ρ ∈ RC+
satisfying

∑C
c=1 p̂cρc ≤ ε, B(P̂) is non-empty with P̂∈B(P̂). Moreover, if all ρ and ε are zero, then

B(P̂) becomes the singleton set {P̂} that contains only the nominal distribution.

The set B(P̂) is a parametric ambiguity set: all conditional distributions QY |x̂c
belong to the same

parametric exponential family, and at the same time, the marginal distribution QX is absolutely
continuous with respect to a discrete distribution P̂X and hence QX can be parametrized using a
C-dimensional probability vector.

At first glance, the ambiguity set B(P̂) looks intricate and one may wonder whether the complexity
of B(P̂) is necessary. In fact, it is appealing to consider the ambiguity set

B(P̂),

Q∈M(X×Y) :

∃QX ∈M(X ), ∃θc ∈ Θ such that QY |x̂c
∼ f( · |θc) ∀c

Q({x̂c} ×A) = QX({x̂c})QY |x̂c
(A) ∀c,∀A ⊆ Y measurable

KL(Q ‖ P̂) ≤ ε

 (7)

which still preserves the parametric conditional structure and entails only one KL divergence con-
straint on the joint distribution space. Unfortunately, the ambiguity set B(P̂) may be overly conser-
vative as pointed out in the following result.

Proposition 2.6. Denote momentarily the ambiguity sets (6) and (7) by Bε,ρ(P̂) and Bε(P̂) to make
the dependence on the radii explicit. For any nominal distribution P̂ of the form (5) and any radius
ε ∈ R+, we have

Bε(P̂) =
⋃
ρ∈RC

+
Bε,ρ(P̂).
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Proposition 2.6 suggests that the ambiguity set B(P̂) can be significantly bigger than B(P̂), and that
the solution of the distributionally robust MLE problem (4) with B(P̂) being replaced by B(P̂) is
potentially too conservative and may lead to undesirable or uninformative results.

The ambiguity set B(P̂) requires 1 + C parameters, including one marginal radius ε and C condi-
tional radii ρc, c = 1, . . . , C, which may be cumbersome to tune in the implementation. Fortunately,
by the asymptotic result in Lemma 4.4, the set of radii ρc can be tuned simultaneously using the same
scaling rate, which will significantly reduce the computational efforts for parameter tuning.

3 Tractable Reformulation

We devote this section to study the solution method for the min-max problem (4) by transforming it
into a finite dimensional minimization problem. To facilitate the exposition, we denote the ambiguity
set for the conditional distribution of Y given X = x̂c as

BY |x̂c
,
{
QY |x̂c

∈M(Y) : ∃θ ∈ Θ, QY |x̂c
( · ) ∼ f( · |θ), KL(QY |x̂c

‖ P̂Y |x̂c
) ≤ ρc

}
. (8)

As a starting point, we first show the following decomposition of the worst-case expected loss under
the ambiguity set B(P̂) for any measurable loss function.

Proposition 3.1 (Worst-case expected loss). Suppose that B(P̂) is defined as in (6) for some ε ∈ R+

and ρ ∈ RC+ such that
∑C
c=1 p̂cρc ≤ ε. For any function L : X × Y → R measurable, we have

sup
Q∈B(P̂)

EQ [L(X,Y )] =


inf α+ βε+ β

∑C
c=1 p̂c exp

(
β−1(tc − α)− ρc − 1

)
s. t. t ∈ RC , α ∈ R, β ∈ R++

sup
QY |x̂c∈BY |x̂c

EQY |x̂c
[L(x̂c, Y )] ≤ tc ∀c = 1, . . . , C.

Proposition 3.1 leverages the decomposition structure of the ambiguity set B(P̂) to reformulate the
worst-case expected loss into an infimum problem that involvesC constraints, where each constraint
is a hypergraph reformulation of a worst-case conditional expected loss under the ambiguity set
BY |x̂c

. Proposition 3.1 suggests that to reformulate the min-max estimation problem (4), it suffices
now to reformulate the worst-case conditional expected log-loss

sup
QY |x̂c∈BY |x̂c

EQY |x̂c
[`λ(x̂c, Y, w)] (9)

for each value of x̂c into a dual infimum problem. Using Lemma 2.5, one can rewrite BY |x̂c
in (8)

using the natural parameter representation as

BY |x̂c
=
{
QY |x̂c

∈M(Y) :∃θ ∈ Θ,QY |x̂c
( · )∼f( · |θ),

〈
θ − θ̂c,∇Ψ(θ)

〉
−Ψ(θ) + Ψ(θ̂c) ≤ ρc

}
.

Since Ψ is convex [2, Lemma 1], it is possible that BY |x̂c
is represented by a non-convex set of

natural parameters and hence reformulating (9) is non-trivial. Surprisingly, the next proposition
asserts that problem (9) always admits a convex reformulation.
Proposition 3.2 (Worst-case conditional expected log-loss). For any x̂c ∈ X andw ∈ W , the worst-
case conditional expected log-loss (9) is equivalent to the univariate convex optimization problem

inf
γc∈R++

γc
(
ρc −Ψ(θ̂c)

)
+ γcΨ

(
θ̂c − γ−1c λ(w, x̂c)

)
+ Ψ

(
λ(w, x̂c)

)
. (10)

A reformulation for the worst-case conditional expected log-loss was proposed in [19]. Nevertheless,
the results in [19, Section 5.3] requires that the sufficient statistics T (y) is a linear function of
y. The reformulation (10), on the other hand, is applicable when T is a nonlinear function of
y. Examples of exponential family of distributions with nonlinear T are (multivariate) Gaussian,
Gamma and Beta distributions. The results from Propositions 3.1 and 3.2 lead to the reformulation
of the distributionally robust estimation problem (4), which is the main result of this section.
Theorem 3.3 (Distributionally robust MLE reformulation). The distributionally robust MLE prob-
lem (4) is tantamount to the following finite dimensional optimization problem

inf α+ βε+ β
∑C
c=1 p̂c exp(β−1(tc − α)− ρc − 1)

s. t. w ∈ W, α ∈ R, β ∈ R++, γ ∈ RC++, t ∈ RC

γc
(
ρc −Ψ(θ̂c)

)
+ γcΨ

(
θ̂c − γ−1c λ(w, x̂c)

)
+ Ψ

(
λ(w, x̂c)

)
≤ tc ∀c = 1, . . . , C.

(11)
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In generalized linear models with λ : (w, x) 7→ w>x andW being convex, problem (11) is convex.
Below we show how the Poisson and logistic regression models fit within this framework.
Example 3.4 (Poisson counting model). The Poisson counting model with the ground measure ν
being a counting measure on Y = N, the sufficient statistic T (y) = y, the natural parameter space
Θ = R and the log-partition function Ψ(θ) = exp(θ). If λ(w, x) = w>x, we have

Y |X = x ∼ Poisson
(
w>0 x

)
, P(Y = k|X = x) = (k!)−1 exp(kw>0 x− ew

>
0 x).

The distributionally robust MLE is equivalent to the following convex optimization problem

inf α+ βε+ β
∑C
c=1 p̂c exp

(
β−1(tc − α)− ρc − 1

)
s. t. w ∈ W, α ∈ R, β ∈ R++, γ ∈ RC++, t ∈ RC

γc
(
ρc − exp(θ̂c)

)
+ γc exp

(
θ̂c − w>x̂c/γc

)
+ exp

(
w>x̂c

)
≤ tc ∀c = 1, . . . , C.

(12)

Example 3.5 (Logistic regression). The logistic regression model is specified with ν being a count-
ing measure on Y = {0, 1}, the sufficient statistic T (y) = y, the natural parameter space Θ = R
and the log-partition function Ψ(θ) = log

(
1 + exp(θ)

)
. If λ(w, x) = w>x, we have

Y |X = x ∼ Bernoulli
(
(1 + exp(−w>0 x))−1

)
, P(Y = 1|X = x) = (1 + exp(−w>0 x))−1.

The distributionally robust MLE is equivalent to the following convex optimization problem

inf α+ βε+ β
∑C
c=1 p̂c exp

(
β−1(tc − α)− ρc − 1

)
s. t. w ∈ W, α ∈ R, β ∈ R++, γ ∈ RC++, t ∈ RC

γc
(
ρc−log(1+exp(θ̂c))

)
+γc log

(
1+exp(θ̂c−w>x̂c/γc)

)
+log

(
1+exp(w>x̂c)

)
≤ tc ∀c.

(13)

Problems (12) and (13) can be solved by exponential conic solvers such as ECOS [12] and
MOSEK [24].

4 Theoretical Analysis

In this section, we provide an in-depth theoretical analysis of our estimator. We first show that our
proposed estimator is tightly connected to several existing regularization schemes.
Proposition 4.1 (Connection to the adversarial reweighting scheme). Suppose that x̂i are distinct
and ρc = 0 for any c = 1, . . . , N . If P̂ is of the form (5) and chosen according to Example 2.2, then
the distributionally robust estimation problem (4) is equivalent to

min
w∈W

sup
Q:KL(Q‖P̂emp)≤ε

EQ[`λ(X,Y,w)].

Proposition 4.1 asserts that by setting the conditional radii to zero, we can recover the robust esti-
mation problem where the ambiguity set is a KL ball around the empirical distribution P̂emp, which
has been shown to produce the adversarial reweighting effects [23, 6]. Recently, it has been shown
that distributionally robust optimization using f -divergences is statistically related to the variance
regularization of the empirical risk minimization problem [26]. Our proposed estimator also admits
a variance regularization surrogate, as asserted by the following proposition.
Proposition 4.2 (Variance regularization surrogate). Suppose that Ψ has locally Lipschitz continu-
ous gradients. For any fixed θ̂c ∈ Θ, c = 1, . . . , C, there exists a constant m > 0 that depends only
on Ψ and θ̂c, c = 1, . . . , C, such that for any w ∈ W and ε ≥

∑C
c=1 p̂cρc, we have

sup
Q∈B(P̂)

EQ[`λ(X,Y,w)] ≤ EP̂[`λ(X,Y,w)] + κ1

√
VarP̂ (`λ(X,Y,w)) + κ2‖λ(w, x̂c)‖2,

where κ1 =
√

2ε/(minc
√
p̂c) and κ2 =

√
2 maxc ρc/m.

One can further show that for sufficiently small ρc, the value of m is proportional to the inverse
of the local Lipschitz constant of ∇Ψ at θ̂c, in which case κ2 admits an explicit expression (see
Appendix D). Next, we show that our robust estimator is also consistent, which is a highly desirable
statistical property.
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Theorem 4.3 (Consistency). Assume that w0 is the unique solution of the problem
minw∈W EP [`λ(X,Y,w)], where P denotes the true distribution. Assume that X has finite car-
dinality, Θ = Rp, Ψ has locally Lipschitz continuous gradients, and `λ(x, y, w) is convex in w for
each x and y. If θ̂c

p.−→ λ(w0, x̂c) for each c, ε → 0, ρc → 0 and ε ≥
∑C
c=1 p̂cρc with probability

going to 1, then the distributionally robust estimator w? that solves (4) exists with probability going
to 1, and w?

p.−→ w0.

One can verify that choosing θ̂c using Examples 2.2 and 2.3 will satisfy the condition θ̂c
p.−→

λ(w0, x̂c), and as a direct consequence, choosing P̂ following these two examples will result in
a consistent estimator under the conditions of Theorem 4.3.

We now consider the asymptotic scaling rate of ρc as the number Nc of samples with the same
covariate x̂c tends to infinity. Lemma 4.4 below asserts that ρc should scale at the rate N−1c . Based
on this result, we can set ρc = aN−1c for all c, where a > 0 is a tuning parameter. This reduces
significantly the burden of tuning ρc down to tuning a single parameter a.

Lemma 4.4 (Joint asymptotic convergence). Suppose that |X | = C with P(X = x̂c) > 0. Let
θc = λ(w0, x̂c) and P̂ be defined as in Example 2.2. Let Vc = DcCovf( · |θc)(T (Y ))D>c , where
Dc = J(∇Ψ)−1(Ef( · |θc)[T (Y )]) and J denotes the Jacobian operator. Then the following joint
convergence holds(
N1 ×KL(f( · |θ1) ‖ f( · |θ̂1)), . . . , NC ×KL(f( · |θC) ‖ f( · |θ̂C))

)> d.−→ Z as N →∞,
(14)

where Z = (Z1, . . . , ZC)> with Zc = 1
2R
>
c ∇2Ψ(θc)Rc, Rc are independent and Rc ∼ N (0, Vc).

Assuming wMLE that solves (3a) is asymptotically normal with square-root convergence rate, we
remark that the asymptotic joint convergence (14) also holds for P̂ in Example 2.3, though in this
case the limiting distribution Z takes a more complex form that can be obtained by the delta method.

Finally, we study the structure of the worst-case distribution Q? = arg maxQ∈B(P̂)EQ
[
`λ(X,Y,w)

]
for any value of input w. This result explicitly quantifies how the adversary will generate the adver-
sarial distribution adapted to any estimate w provided by the statistician.

Theorem 4.5 (Worst-case joint distribution). Given ρ ∈ RC+ and ε ∈ R+ such that
∑C
c=1 p̂cρc ≤ ε.

For any w and c = 1, . . . , C, let Q?Y |x̂c
∼ f( · |θ?c ) with θ?c = θ̂c − λ(w, x̂c)/γ

?
c , where γ?c > 0 is

the solution of the nonlinear equation

Ψ
(
θ̂c − γ−1λ(w, x̂c)

)
+ γ−1

〈
∇Ψ

(
θ̂c − γ−1λ(w, x̂c)

)
, λ(w, x̂c)

〉
= Ψ(θ̂c)− ρc,

and let t?c = Ψ(λ(w, x̂c))−
〈
∇Ψ(θ?c ), λ(w, x̂c)

〉
. Let α? ∈ R and β? ∈ R++ be the solution of the

following system of nonlinear equations∑C
c=1 p̂c exp

(
β−1(t?c − α)− ρc − 1

)
− 1 = 0∑C

c=1 p̂c(t
?
c − α) exp

(
β−1(t?c − α)− ρc − 1

)
− (ε+ 1)β = 0,

then the worst-case distribution is Q? =
∑C
c=1 p̂c exp

(
(β?)−1(t?c − α?)− ρc − 1

)
δx̂c
⊗Q?Y |x̂c

.

Notice that Q? is decomposed into a worst-case marginal distribution of X supported on x̂c and a
collection of worst-case conditional distributions Q?Y |x̂c

.

5 Numerical Experiments

We now showcase the abilities of the proposed framework in the distributionally robust Poisson
and logistic regression settings using a combination of simulated and empirical experiments. All
optimization problems are modeled in MATLAB using CVX [16] and solved by the exponen-
tial conic solver MOSEK [24] on an Intel i7 CPU (1.90GHz) computer. Optimization problems
(12) and (13) are solved in under 3 seconds for all instances both in the simulated and empiri-
cal experiments. The MATLAB code is available at https://github.com/angelosgeorghiou/
DR-Parametric-MLE.
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Figure 1: Median (solid blue line) and the 10th-90th percentile region (shaded) of out-of-sample
divergence loss collected from 100 independent runs.

N = 50 N = 100 N = 500
100(DRO-MLE)/MLE −69.84± 3.33% −52.66± 3.98% −22.25± 4.11%

CI95% 100(DRO− L1)/L1 −22.59± 4.02% −19.90± 4.16% −13.20± 3.38%
100(DRO− L2)/L2 −14.98± 4.08% −9.98± 4.14% −5.62± 2.83%

CVaR5%

MLE 0.4906 0.1651 0.0246
L1 0.0967 0.0742 0.0195
L2 0.0894 0.0692 0.0176

DRO 0.0547 0.0518 0.0172
Table 1: Comparison between the DRO estimator with the other methods. Lower values are better.

5.1 Poisson Regression

We will use simulated experiments to demonstrate the behavior of the tuning parameters and to
compare the performance of our estimator with regard to other established methods. We assume that
the true distribution P is discrete, the 10-dimensional covariate X is supported on K = 100 points
and their locations x̂k are generated i.i.d. using a standard normal distribution. We then generate a
K-dimensional vector whose components are i.i.d. uniform over Mk ∈ [0, 10000], then normalize
it to get the probability vector pk = Mk/M of the true marginal distribution of X . The value w0

that determines the true conditional distribution PY |X via the generative model (1) is assigned to
w0 = w̃/‖w̃‖1, where w̃ is drawn randomly from a 10-dimensional standard normal distribution.

Our experiment comprises 100 simulation runs. In each run we generate N ∈ {50, 100, 500} train-
ing samples i.i.d. from P and use the MLE-compatible nominal distribution P̂ of the form (5) as in
Example 2.3. We calibrate the regression model (12) by tuning ρc = aN−1c with a ∈ [10−4, 1]

and ε ∈ [
∑C
c=1 p̂cρc, 1], both using a logarithmic scale with 20 discrete points. The quality of an

estimate w? with respect to the true distribution P is evaluated by the out-of-sample divergence loss

EPX
[KL(PY |X ‖ Qw?,Y |X)] =

∑K
k=1 pk

(
exp(w>0 x̂k)

(
(w0 − w?)>x̂k − 1

)
+ exp(x̂>k w

?)
)
.

In the first numerical experiment, we fix the marginal radius ε = 1 and examine how tuning the
conditional radii ρc can improve the quality of the estimator. Figure 1 shows the 10th, 50th and
90th percentile of the out-of-sample divergence for different samples sizes. If the constant a is
chosen judiciously, incorporating the uncertainty in the conditional distribution can reduce the out-
of-sample divergence loss by 17.65%, 10.55% and 1.82% for N = 50, 100 and 500, respectively.

Next, we compare the performance of our proposed estimator to the wMLE that solves (3a) and
the 1-norm (L1) and 2-norm (L2) MLE regularization, where the regularization weight takes values
in [10−4, 1] on the logarithmic scale with 20 discrete points. In each run, we choose the optimal
parameters that give the lowest of out-of-sample divergence for each method, and construct the
empirical distribution of the out-of-sample divergence collected from 100 runs. Table 1 reports the
95% confidence intervals of 100(DRO−MLE)/MLE, 100(DRO−L1)/L1 and 100(DRO−L2)/L2,
as well as the 5% Conditional Value-at-Risk (CVaR). Our approach delivers lower out-of-sample
divergence loss compared to the other methods, and additionally ensures a lower value of CVaR for
all sample sizes. This improvement is particularly evident in small sample sizes.
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AUC CCR
Dataset DRO KL L1 L2 MLE DRO KL L1 L2 MLE
australian (N = 690, n = 14) 92.74 92.62 92.73 92.71 92.61 85.75 85.72 85.52 85.60 85.72
banknote (N = 1372, n = 4) 98.46 98.46 98.43 98.45 98.45 94.31 94.32 94.16 94.35 94.32
climate (N = 540, n = 18) 94.30 82.77 94.85 94.13 82.76 95.04 93.89 94.85 94.83 93.89
german (N = 1000, n = 19) 75.75 75.68 75.74 75.74 75.67 73.86 74.05 73.82 73.70 74.05
haberman (N = 306, n = 3) 66.86 67.21 69.19 68.17 67.20 73.83 73.80 73.20 73.18 73.80
housing (N = 506, n = 13) 76.24 75.73 75.37 75.57 75.73 91.65 91.70 92.68 92.65 91.70
ILPD (N = 583, n = 10) 74.01 73.66 73.56 73.77 73.66 71.11 71.07 71.68 71.79 71.07
mammo. (N = 830n = 5) 87.73 87.72 87.70 87.68 87.71 81.00 81.20 80.99 80.94 81.20

Table 2: Average area under the curve (AUC) and correct classification rates (CCR) on UCI datasets
(m = 1).

5.2 Logistic Regression

We now study the performance of our proposed estimation in a classification setting using data sets
from the UCI repository [13]. We compare four different models: our proposed DRO estimator (13),
the wMLE that solves (3a), the 1-norm (L1) and 2-norm (L2) MLE regularization. In each indepen-
dent trial, we randomly split the data into train-validation-test set with proportion 50%-25%-25%.
For our estimator, we calibrate the regression model (13) by tuning ρc = aN−1c with a ∈ [10−4, 10]

using a logarithmic scale with 10 discrete points and setting ε = 2
∑C
c=1 p̂cρc. Similarly, for the L1

and L2 regularization, we calibrate the regularization weight from [10−4, 1] on the logarithmic scale
with 10 discrete points. Leveraging Proposition 4.1, we also compare our approach versus the DRO
nonparametric Kullback-Leibler (KL) MLE by setting ρc = 0 and tune only with ε ∈ [10−4, 10]
with 10 logarithmic scale points. The performance of the methods was evaluated on the testing data
using two popular metrics: the correct classification rate (CCR) with a threshold level of 0.5, and
the area under the receiver operating characteristics curve (AUC). Table 2 reports the performance
of each method averaged over 100 runs. One can observe that our estimator performs reasonably
well compared to other regularization techniques in both performance metrics.

Remark 5.1 (Uncertainty in x̂c). The absolute continuity condition of the KL divergence implies
that our proposed model cannot hedge against the error in the covariate x̂c. It is natural to ask which
model can effectively cover this covariate error. Unfortunately, answering this question needs to
overcome two technical difficulties: first, the log-partition function Ψ is convex; second, there are
multiplicative terms between X and Y in the objective function. Maximizing over the X space to
find the worst-case covariate is thus difficult. Alternatively, one can think of perturbing each x̂c in a
finite set but this approach will lead to trivial modifications of the constraints of problem (11).

Broader Impact

This is a theoretical contribution which relates to arguably the single most popular class of statis-
tical estimators, namely, maximum likelihood estimators. We provide a novel view of these types
of estimators, by introducing robustness in their design. This robustness layer enables the use of
these types of estimators in the context of (adversarially) contaminated data, which has been a long-
standing issue in research. We believe that this paper makes an important contribution to multiple
areas, including but not limited to: adversarial machine learning, convex optimization, distribution-
ally robust optimization, and game theory. The fact that our proposed estimator can be computed
efficiently by state-of-the-art solvers sheds light on its wide applicability in general academia and
industry setting.

For example, our robust maximum likelihood estimators could potentially be used in situations in
which data sets of different types of domains are combined to estimate key performance indicators
for decision makers (e.g. collecting data from different types of demand functions in a business set-
ting, or different social impact measures in a public policy setting). This enables the decision maker
to design strategies that are robust against changes in business or public circumstances, thereby
creating a positive social impact.

In addition, with regard to human resource development, this work will be integrated as a part of the
tools that we intend to teach in Ph.D. courses, thus positively impacting the training of the workforce
in academia and general industries. Questions remaining for issues like ethical implications of our

9



estimator, which we intend to explore in the future under the framework such as differential privacy
and algorithmic fairness.
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