
A Dataset descriptions

Table 4: Datasets and transformation sequences used
Dataset Samples Classes Dimension Transformation sequence

Standard
MNIST [31] 70,000 10 1×28×28 aff-morpho-tps
MNIST-test [31] 10,000 10 1×28×28 aff-morpho-tps
USPS [17] 9,298 10 1×16×16 col-aff-tps
Fashion-MNIST [47] 70,000 10 1×28×28 col-aff-tps
FRGC [43] 2,462 20 3×32×32 col-aff-tps
SVHN [42] 99,289 + unlabeled extra 10 3×28×28 col-proj

Augmented
MNIST-1k 1,000 10 1×28×28 aff-morpho-tps
MNIST-color 70,000 10 3×28×28 col-aff-tps
affNIST-test 320,000 10 1×40×40 aff-morpho-tps

Real photographs
All 1k to 15k - 3×128×128 col-proj

Table 4 summarizes dataset characteristics as well as the transformation sequences used. Datasets
are:

– MNIST and MNIST-test [31] which respectively correspond to full and test subset of MNIST
dataset. They depict binary white handwritten digits centered over a black background.

– USPS [17] is a handwritten digit dataset from USPS composed of greyscale images.
– Fashion-MNIST [47] is a 10-class clothing dataset composed of greyscale images of cloth over

black background. Classes are: T-shirt, trouser, pullover, dress, coat, sandal, shirt, sneaker, bag,
ankle boot.

– FRGC [43] is a colored face dataset. We use a subset of this dataset introduced in [49], where
20 subjects are selected and each image is cropped and resized to a constant size of 32×32.

– SVHN [42] is composed of digits extracted from house numbers cropped from Google Street
View images. Following standard practice for clustering, we use both labeled samples (99,289)
and unlabeled extra samples (~530k) for training and evaluate on the labeled subset only.

– affNIST-test is the test split of affNIST (https://www.cs.toronto.edu/ tijmen/affNIST/) an aug-
mented dataset of MNIST where random affine transformations are applied.

– MNIST-1k: we randomly sampled 1,000 images from the test split of MNIST.
– MNIST-color: we augmented MNIST with random colors for background and foreground.

B Transformation invariance

We consider N image samples x1:N , K prototypes c1:K and a group of parametric transformations
{Tβ , β ∈ B}. For β1, β2 ∈ B, we write β1β2 ∈ B the element such that Tβ1β2

= Tβ1
◦ Tβ2

. We
have, for any α1, . . . , αK ∈ B:

LTI({c1, . . . , cK}) = LTI({Tα1
(c1), . . . , TαK

(cK)}).

Indeed:

LTI({Tα1(c1), . . . , TαK
(cK)}) =

N∑
i=1

min
{β1,...,βK}∈BK

l(xi, {Tβ1 ◦ Tα1(c1), . . . , TβK
◦ TαK

(cK)})

=

N∑
i=1

min
{β1,...,βK}∈BK

l(xi, {Tβ1α1(c1), . . . , TβKαK
(cK)})

=

N∑
i=1

min
{β′

1,...,β
′
K}∈BK

l(xi, {Tβ′
1
(c1), . . . , Tβ′

K
(cK)})

= LTI({c1, . . . , cK}),

using the variable change β′k = βkαk, which is possible because for any α ∈ B, αB = B as we
assumed to have a group of transformations.
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In some specific cases, the loss is also invariant to the samples, in particular when the loss l is invariant
to joint transformation of the prototype and the samples, i.e. for any β ∈ B, l(xi, {c1, . . . , cK} =
l(Tβ(xi), {Tβ(c1), . . . , Tβ(cK)}. This is the case for example for K-means with a group of isometric
transformations (e.g. rigid transformations), and it is also the case for GMM with the group of affine
transformations applied to both the mean and covariance mixture parameters.

Note that we also tried to transform the samples to match the prototypes, which would lead to an in-
variance to sample transformation. However, a trivial solution to corresponding optimization problem
is to learn "empty" prototypes and transformations of the samples into empty images. For examples,
for the MNIST case with affine transformations, we observed that completely black prototypes were
learned and any digit was transformed into a black image. Although a regularization term could
have prevented such behaviour, we argue that keeping raw samples as target and transforming the
prototypes is simpler and effective.

C Analysis

C.1 Statistics on standard clustering benchmarks

Table 5: Detailed results. We report statistics of our results on standard clustering benchmarks. For
SVHN, we also report results with our Gaussian weighted loss (?).

MNIST MNIST-test USPS F-MNIST FRGC SVHN

Method Runs Stat ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC

DTI K-means 10 avg 97.3 94.0 96.6 94.6 86.4 88.2 61.2 63.7 39.6 48.7 36.4 / 44.5?

10 std 0.1 0.1 4.1 1.5 4.1 1.6 2.0 0.3 1.7 2.2 1.9 / 9.6?

10 min 97.1 93.8 84.9 90.4 83.2 87.1 57.4 63.2 35.9 43.9 34.5 / 37.0?

10 median 97.3 94.0 97.9 95.1 85.0 87.4 61.9 63.3 40.2 49.3 35.8 / 39.6?

10 max 97.5 94.2 98.0 95.3 96.4 92.0 63.3 64.2 41.1 51.4 39.6 / 62.6?

10 minLoss 97.2 93.8 98.0 95.3 89.8 89.5 57.4 64.1 41.1 49.7 39.6 / 62.6?

DTI GMM 10 avg 95.9 93.2 97.8 94.7 84.5 87.2 59.6 62.2 40.1 48.9 36.7 / 57.4?

10 std 3.9 1.5 0.1 0.2 2.0 0.8 4.7 2.4 1.4 1.5 2.3 / 5.1?

10 min 84.7 89.1 97.7 94.4 82.0 86.3 56.1 59.7 38.4 46.8 34.0 / 49.9?

10 median 97.1 93.7 97.8 94.7 84.3 87.1 57.2 60.9 39.6 49.1 36.4 / 57.4?

10 max 97.3 93.9 98.0 95.1 87.3 89.0 68.2 66.3 41.9 51.1 39.5 / 64.6?

10 minLoss 97.1 93.7 98.0 95.1 87.3 89.0 68.2 66.3 41.6 51.1 39.5 / 63.3?

C.2 Accuracy and loss correlation
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Figure 4: Accuracy/loss correlation.
We report loss and accuracy for DTI K-
means on MNIST-test.

Similar to standard K-means and GMM, there is a varia-
tion in performances depending on the random initializa-
tion. We experimentally found that: (i) runs seem to be
mainly grouped into distinct modes, each corresponding
to roughly the same clustering quality; (ii) a run with a
low loss usually leads to high clustering performances.
We launched 100 runs on MNIST-test dataset and plot the
loss with respect to the accuracy for each run in Figure 4.
Except 2 outliers for the 100 runs, the runs with lower loss
correspond to the runs with better performances. This is
verified in most of our experiments, where the minLoss
criterion clearly improves over the average performance.

C.3 Effect of the number of clusters K

Similar to many clustering methods, the selection of the number of clusters is a challenge. We
investigated if a purely quantitative analysis could be applied to select K. In Figure 5a, we plot the
loss of DTI-Kmeans as a function of the number of clusters for MNIST-test (left) and Notre-Dame
(right). For MNIST-test, it is clear an elbow method could be applied to select the good number of
clusters. For Notre-Dame, the quantitative analysis is not as conclusive but in this case, the correct
number of clusters is not clearly defined. In practice, we did not find the qualitative results on internet
photo collections to be very sensitive to this choice, as shown in Figure 5b where learned prototypes
are mostly consistent across the different clustering results.
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(a) Loss w.r.t varying numbers of clusters for MNIST-test (left) and Notre-Dame (right)

(b) Prototypes learned on Notre-Dame for different numbers of clusters

Figure 5: Effect of K. (a) We report the loss of DTI K-means for different numbers of clusters. For
MNIST-test (left), the loss is averaged over 5 runs and for Notre-Dame (right), the loss corresponds
to a single run. (b) We show the prototypes learned on Notre-Dame for even numbers of clusters.

C.4 Constraining color transformation

While evaluating our approaches on real photograph collections, we experimentally observed that a
full affine color transformation module (12 parameters) was too flexible and as a result, prototypes
were able to learn different patterns hidden in each color channel. In Figure 6, we show each R, G
and B channel as a greyscale image for two prototypes learned using a full affine color transformation
module. One can see that a second pattern is hidden in particular in the green channels. To avoid
this effect, we restricted the color transformation module to be a diagonal affine transformation
corresponding to 6 parameters in total.

Figure 6: Learned prototypes and RGB decomposition. Two examples of learned prototypes (first
column) on Florence cathedral collection from [35] using a full color transformation module (12
parameters). The 3 right columns correspond to R, G and B channels rescaled between 0 and 1. Note
how the green channel is used to hide a completely different pattern from the other 2 channels.
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