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Abstract

Deep reinforcement learning (RL) agents trained in a limited set of environments
tend to suffer overfitting and fail to generalize to unseen testing environments.
To improve their generalizability, data augmentation approaches (e.g. cutout and
random convolution) are previously explored to increase the data diversity. How-
ever, we find these approaches only locally perturb the observations regardless
of the training environments, showing limited effectiveness on enhancing the
data diversity and the generalization performance. In this work, we introduce
a simple approach, named mixreg, which trains agents on a mixture of observa-
tions from different training environments and imposes linearity constraints on
the observation interpolations and the supervision (e.g. associated reward) inter-
polations. Mixreg increases the data diversity more effectively and helps learn
smoother policies. We verify its effectiveness on improving generalization by
conducting extensive experiments on the large-scale Procgen benchmark. Results
show mixreg outperforms the well-established baselines on unseen testing envi-
ronments by a large margin. Mixreg is simple, effective and general. It can be
applied to both policy-based and value-based RL algorithms. Code is available at
https://github.com/kaixin96/mixreg.

1 Introduction

Deep Reinforcement Learning (RL) has brought significant progress in learning policies to tackle
various challenging tasks, such as board games like Go [19, 21], Chess and Shogi [20], video
games like Atari [15, 1] and StarCraft [27], and robotics control tasks [14]. Despite its outstanding
performance, deep RL agents tend to suffer poor generalization to unseen environments [31, 23, 29, 3,
2, 30]. For example, in video games, agents trained with a small set of levels struggle to make progress
in unseen levels of the same game [2]; in robotics control, agents trained in simulation environments
of low diversity generalize poorly to the realistic environments [26]. Such a generalization gap has
become a major obstacle for deploying deep RL in real applications.

One of the main causes for this generalization gap is the limited diversity of training environments [29,
3, 2]. Motivated by this, some works propose to improve RL agents’ generalizability by diversifying
the training data via data augmentation techniques [3, 13, 12, 11]. However, these approaches merely
augment the observations individually with image processing techniques, such as random crop, patch
cutout [4] and random convolutions [13]. As shown in Figure 1 (left), such techniques are performing
local perturbation within the state feature space, which only incrementally increases the training data
diversity and thus leads to limited generalization performance gain. This is evidenced by our findings
that these augmentation techniques fail to improve generalization performance of the RL agents when
evaluated on a large-scale benchmark (see Section 4.1).

In this work, we introduce mixreg that trains the RL agent on a mixture of observations collected
from different training environments. Inspired by the success of mixup [32] in supervised learning,
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Figure 1: Left: Previous data augmentation techniques (e.g. cutout) only apply local perturbations
over the observation (s — s,u); they independently augment each observation regardless of training
environments and achieve limited data diversity increment. Right: Our mixreg method smoothly
interpolates observations from different training environments (s;, S; — Smix) thus producing more
diverse data.

per training step, mixreg generates augmented observations by convexly combining two observations
randomly sampled from the collected batch, and trains the RL agent on them with their interpolated
supervision signal (e.g. the associated rewards or state values). In this way, the generated observations
are widely distributed between the diverse observations and can effectively increase the training data
diversity, as shown in Figure 1 (right). Moreover, mixreg imposes piece-wise linearity regularization
to the learned policy and value functions w.r.t. the states. Such regularization encourages the agent to
learn a smoother policy with better generalization performance. Notably, mixreg is a general scheme
and can be applied to both policy-based and value-based RL algorithms.

We evaluate mixreg on the recently introduced Procgen Benchmark [2]. We compare mixreg with three
best-performing data augmentation techniques (i.e. cutout-color, random crop, random convolution)
in [12], and two regularization techniques (i.e. batch normalization [10] and {5 regularization)
adopted in previous works [3, 6]. We find that mixreg boosts the generalization performance of the
RL agent more significantly, surpassing the baselines by a large margin. Moreover, when combined
with other methods such as ¢, regularization, mixreg brings further improvement. We also verify the
effectiveness of mixreg for both policy-based and value-based algorithms. Additionally, we conduct
several analytical experiments to study and provide better understanding on its effectiveness.

This work makes the following contributions.

e We are among the first to study how to effectively increase training data diversity to improve
RL generalization. Different from data augmentation techniques as commonly adopted in
recent works, we propose to look into mixing observations from different environments.

e We introduce mixreg, a simple and effective approach for improving RL generalization by
learning smooth policy over mixed observations. Mixreg can be easily deployed for both
policy and value-based RL algorithms.

e On the recent large-scale Procgen benchmark, mixreg outperforms many well-established
baselines by large margins. It also serves as a strong baseline for future studies.

2 Background

Reinforcement learning We denote an RL task (usually corresponding to an environment) as
K = (M, Py) where M = (S, A, P, R) is a Markov Decision Process (MDP) with state space S,
action space A, transition probability function P and the immediate reward function R. P(s, a, s’)
denotes the probability of transferring from state s to s after action a is taken, while Py represents
the distribution on the initial states Sp C S. A policy is defined as a mapping 7 : S — A that returns
an action a given a state s. The goal of RL is to find an optimal policy 7* which maximizes the



expected cumulative reward:

T
* t
n* = argmaxE,p Y7 Ry, (1)
t=0
where IT is the set of policies, T denotes a trajectory (so, ag, $1,a1,- - -, 57), v € (0, 1] is the discount

factor, and D,; denotes the distribution of 7 under policy 7. RL algorithms can be categorized into
policy-based and value-based ones, which will be briefly reviewed in the following. In Section 3, we
will present how to augment them with our proposed mixreg.

Policy gradient Policy gradient methods maximizes the objective in Eqn. (1) by directly conducting
gradient ascent w.r.t. the policy based on the estimated policy gradient [25]. In particular, at each
update, policy gradient maximizes the following surrogate objective, whose gradient is the policy
gradient estimator:

LP6(0) = Eq [log mo(ay|s:) Ad] , 2
where A; is the estimated advantage function at timestep ¢, 6 denotes the trainable parameters of

the policy. Here E, [-] denotes the empirical average over a collected batch of transitions. A learned
state-value function V'(s) is often used to reduce the variance of advantage estimation. In this work,
we use Proximal Policy Optimization (PPO) [18] for its strong performance and direct comparison
with previous works. Details about PPO are given in the supplementary material.

Deep Q-learning Deep Q-learning methods approximate the optimal policy by first learning an
estimate of the expected discounted return (or value function) and then constructing the policy from
the learned value function [15]. More specifically, at each update, Q-learning minimizes the following
loss function

LPN(0) = B |(Re-+ g Qo(s ) ~ Qolisar)) | ®

where @) represents the state-action value function with learnable parameters 6. 6 denotes network
parameters used to compute the value target. Following [2], we use a Deep Q-Network (DQN) variant
Rainbow [8], which combines six extensions of the DQN algorithm. Details about Rainbow can be
found in the supplementary material.

3 Method

3.1 Generalization in RL

To assess the generalization ability of an RL agent, we consider a distribution of environments p(KC).
The agent is trained on a fixed set of n environments Kyain = {K1,- -+, Kp} (e.g. n different levels
of a video game) with /C; ~ p(K) and then tested on environments drawn from p(XC). Following [2],
we use agents’ zero-shot performance on testing environments to measure the generalization:

T
]ETNDE;“ Z ’}/t Rt (4)
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where 7 is the policy learned on training environments while D denotes the distribution of 7 from
the testing environments. The above performance depends on the difference between training and
testing environments, which is the main cause of generalization gap. When n is small, the training
data diversity is also small and cannot fully represent the whole distribution p, leading to large training-
testing difference. Consequently, the trained agent tends to overfit to the training environments and
yield poor performance on the testing environments, showing large generalization gap. The difference
may come from the environment visual changes [2, 3, 7, 30], dynamical changes [16] or structural
changes [28]. In this work, we focus on tackling the visual changes. However, the proposed method
is general and can be applied for other kinds of changes.

3.2 Mixture regularization

Inspired by the success of mixup in supervised learning [32], we introduce mixture regularization
(mixreg) to increase the diversity of limited training data and thus minimize the generalization gap.
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Figure 2: Visualization of the learned state-value functions V() in PPO for 6 game environments
from Procgen (from left to right). For each game, we plot the value predictions V (s) for observation
s within the convex hull of three randomly selected observations from the testing environments. With
mixreg (mixing s and y together), the learned value function (bottom) is smoother than the one
learned with mixing observations s only.

Specifically, mixreg generates each augmented observation s by convexly combining two observations
54, s; randomly drawn from a collection of transitions:

§=Xs; +(1—N)sy, (5)

where A is drawn from a beta distribution Beta(c, o) with « € (0, 00). This is equivalent to sampling
a new observation from the convex hull of two distinct observations. Thus, the augmented observation
§ can smoothly interpolate between the two observations from different training environments,
effectively increasing the training data diversity. The supervision signal (e.g. reward) associated with
the observation of larger mixing weight is used as the supervision signal for s.

However, only mixing the observations following Eq. 5 may not always be effective on lifting the
generalization performance of the learned agent (see Section 4.3), possibly because the supervision
signal associated with the original observation s; or s; is not proper for the interpolated observation
5. Therefore we further introduce regularization over the supervision signal in a similar interpolation
form. Specifically, let y; denote the associated supervision signal for the state s;, which can be the
reward or state value. Mixreg introduces the following mixture regularization:

7=y + (1= N)yj. (6)

As the virtual observation 5 may largely deviate from s;, s;, such interpolation would provide a
proper supervision signal for 5. Incorporating s,y would increase the training data diversity and
regularize the learning process. From Eqns. (5), (6), mixreg imposes linearity regularization between
the observation and corresponding supervision, which helps learn a smooth policy and value function.
Figure 2 visualizes different learned value functions. We can see that interpolating the supervision
signals indeed helps learn smoother value functions compared to only mixing states. Additional
results are provided in the supplementary material.

3.3 Application to policy gradient and deep Q-learning

Mixreg can be applied to both policy gradient and deep Q-learning algorithms. In the case of policy
gradient, with the interpolated observation and supervision s, g, the objective changes from (2) to

L70(9) = B [log m(al3)4] . ™

where A = MA; + (1 — \)A;, and @ is a; if A > 0.5 or a; otherwise.
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Figure 3: Testing performance of different methods on 500 level generalization. Left: Testing perfor-
mance on individual environments. Right: Mean normalized score averaged over all environments.

Similarly, for DQN, the vanilla objective in Eq. (3) becomes
- . - - 2
LPN(9) =K, ; [(R +ymaxQg(a’) — Qo (3, d)) ] , (8)

where R = AR; + (1 — MR, Qg(a’) = \Qg(s,a’) + (1 — NQq(s},a’), and ais a; if A > 0.5 or
a; otherwise. To be specific, during the optimization phase of an RL algorithm, we first sample a
mixing coefficient A for each collected transition and then mix each transition with another randomly
drawn from the same batch. The optimization is performed on the augmented transitions. The above
two objectives Eqns. (7), (8) give the basic formulation of applying mixreg in policy-based and
value-based RL algorithms. Details about applying mixreg to PPO and Rainbow are given in the
supplementary material.

4 Experiments

In this section, we aim at answering three questions. 1) Is mixreg able to improve generalization in
terms of testing performance in new environments? 2) Is mixreg applicable to different reinforcement
learning algorithms and model sizes? 3) How does mixreg take effect for boosting RL generalization?
We conduct experiments on the large-scale Procgen Benchmark [2] to answer each one of them.

The Procgen Benchmark presents a suite of 16 procedurally generated game-like environments
where visual changes exist between training and testing levels. For most of our experiments, we
choose 6 environments (Caveflyer, Climber, Dodgeball, Fruitbot, Jumper, Starpilot) with
large generalization gaps. More explanations on such choice are provided in the supplementary
material. For RL algorithms, we use Proximal Policy Optimization (PPO) [18] for most experiments
considering its strong performance and for fair comparison with previous works. We also use
Rainbow [8] to show the applicability of mixreg to value-based RL algorithms. Following [2], we
use the convolutional network architecture proposed in IMPALA [5]. Results are averaged over 3
runs and the standard deviations are plotted as shaded areas. For some experiments, we additionally
compute the mean normalized scores over different games following [2], in order to report a single
score across the 6 environments. Hyperparameters, full training curves and other implementation
details are provided in the supplementary material.

4.1 Can mixreg improve generalization performance of RL agents?

Following [2], we adopt the “500 level generalization” as our main evaluation protocol. Specifically,
an agent is trained on a limited set of 500 levels, and evaluated w.r.t. its zero-shot performance
averaged over unseen levels at testing. Unseen levels typically have different background images or
different layouts, which are easy for humans to adapt to but challenging for RL agents.

We compare the proposed mixreg with cutout-color, random crop and random convolution that
achieve high performance gain in [12], and ¢, regularization and batch normalization that outperform
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Figure 4: Training and testing performance of combining mixreg with /5 regularization, random crop
and cutout-color on 500 level generalization, in Starpilot.
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Figure 5: Training and testing performance as a function of the number of training levels. Circles
represent individual runs.

other regularization techniques according to [3]. We also include network randomization [13] for
comparison, which is the predecessor to random convolution. Results are plotted in Figure 3. We can
see mixreg outperforms PPO baseline by a large margin and offers more consistent performance boost
than ¢5 regularization and batch normalization. The data augmentation methods (cutout-color, random
crop and random convolution) perform worse, in some environments even worse than PPO baseline.
This is possibly because data augmentation via local perturbation does not effectively increase the
training diversity but creates additional discrepancy between training and testing. We also evaluate
mixreg on other 10 environments in Procgen and the results are included in the supplementary material.
Moreover, on environments where other augmentation or regularization methods outperform the
PPO baseline, such as Starpilot, combining our mixreg with them can further improve testing
performance and reduce the generalization gap, as shown in Figure 17.

Following [2], we further evaluate generalization performance regarding different numbers of training
levels to better validate effectiveness of our method. We plot the results in Figure 5. In comparison
with the PPO baseline, our method significantly improves the agents’ zero-shot performance in testing
environments across different numbers of training levels. Mixreg requires fewer training levels to
reach the same testing performance as the PPO baseline, demonstrating its effectiveness in increasing
the training data diversity. Moreover, we can observe in Figure 5 that the performance of the PPO
baseline often drops first, implying overfitting on the limited training levels. In comparison, our
mixreg is less prone to overfitting, showing good regularization effects.

4.2 1Is mixreg widely applicable?

Scaling model size Increasing the model size is shown to significantly improve generalization [2].
A natural question is whether the proposed mixreg brings improvement across different model sizes.
Thus we evaluate how mixreg performs with networks of varying sizes. Following [2] we scale
the number of convolutional channels at each layer by 2 or 4. The generalization performance on
each environment is shown in Figure 6. Across different model sizes, our method exhibits great
performance gain compared to the PPO baseline. On environments with little improvement observed
in final testing performance, such as Fruitbot, mixreg is still more sample-efficient than the baseline.
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Figure 6: Training and testing performance w.r.t. different model sizes on 500 level generalization.
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Figure 7: Training and testing performance of Rainbow with mixreg on 500 level generalization.
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Figure 8: Ablation results of whether interpolating supervision signals.

Applying to value-based RL algorithm In Section 3 we have discussed the application of mixreg
to the value-based RL algorithm. Here we conduct experiments to evaluate its effectiveness. Follow-
ing [2], we use Rainbow [8] and test how much improvement mixreg can bring. We also include a
variant using ¢, regularization for comparison. Results in Figure 7 demonstrate that mixreg is also
applicable to the value-based RL algorithm and yields significant improvement on generalization.

4.3 How does mixreg benefit generalization performance?

Benefits of mixing supervision When using data augmentation to increase data diversity, a natural
choice is to only augment the input observations. However, our proposed mixreg also involves mixing
the associated supervision signal (Eqn. (6)). To investigate the benefits of mixing supervision, we
conduct an ablation experiment to see how well it performs with only mixing the observations. From
the results in Figure 8, we can see in some games only mixing the observations does not bring any
performance improvement over the baseline. The mixing of the supervision signals is necessary to
effectively increase the training diversity and important for improving policy generalizability.

Benefiting representation learning It is found that applying regularization to DQN helps learn
representations more amenable to fine-tuning [6]. To see how the mixreg serves as regularization to
improve the learned representation, we conduct two finetuning experiments. First, we fix the feature
extraction part in the network and finetune the policy head and value head on the testing levels for
60M timesteps. As shown in Figure 9 (top), when finetuned on testing environments, the policy
learned with mixreg achieves much higher performance. Secondly, we finetune the entire model
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Figure 9: Performance of finetuning trained policies on testing levels with representation fixed (Top)
or learnable (Bottom).

on the testing levels and compare the learned policy to the one trained from scratch. As shown in
Figure 9 (bottom), mixreg significantly improves the sample efficiency when the trained policy is
finetuned in the new environments. The above results demonstrate that mixreg can help learn more
adaptable representation.

5 Related works

Generalization in RL draws increasing attention in recent years. Some works [3, 29, 2] show the
generalization gap comes from the limited diversity of training environments. This provides a
direction to minimize the generalization gap via increasing the training diversity. Cobbe et al. [3] find
augmenting the observations with cutout [4] helps improve generalization. Lee et al. [13] propose
to use a randomized convolutional layer for randomly perturbing the input observations. Apart
from cutout and random convolution, Laskin et al. [12] further evaluate a wide spectrum of data
augmentations on improving generalization. Concurrently, Kostrikov et al. [11] propose DrQ to apply
data augmentations in model-free RL algorithms. Rather than finding the best augmentation for all
tasks, Raileanu et al. [17] propose to automatically select an appropriate augmentation for each given
task. In addition to increasing training diversity, regularization techniques such as ¢ regularization,
dropout [24] and batch normalization [10] also help improve RL agents’ generalizability [6, 3, 9]. Our
work follows the direction of increasing training diversity but proposes a more effective approach than
prior data augmentation techniques. It can be combined with other methods such as /5 regularization
to yield further improvement.

Our work is also related to mixup [32] in supervised learning. Mixup establishes a linear relationship
between the interpolation of the features and that of the class labels, increasing the generalization and
robustness of the trained classification model. The authors of [32] argued the interpolation principle
seems like a reasonable inductive bias that can be possibly extended to RL. Inspired by this, our work
investigates on whether enforcing a linear relationship between interpolations of observations and
supervision signals helps improve generalization in RL and how it affects the learned policy. To the
best of our knowledge, only one existing work [22] applies mixup in RL but their aim is distinct from
ours. They uses mixup regularization for learning a reward function while our target is improving
generalization.

6 Conclusion

In this work, we propose to enhance generalization in RL from the aspect of increasing the training
data diversity. We find that existing data augmentation techniques are not suitable as they only
perform local perturbation without sufficient diversity. We then consider exploiting the mixture of
observations from different training environments. We introduce a simple approach mixreg which
trains the policy model on the mixture of observations with the correspondingly mixed supervision
signals. We demonstrate that our mixreg is much more effective than well-established baselines on



the large-scale Procgen benchmark. Furthermore, we analyze why our mixreg works well and find,
besides its effectiveness on increasing data diversity, there are other two contributing factors: mixreg
helps learn smooth policies; mixreg helps learn better observation representations. In future, we will
explore more flexible and expressive mixing schemes for observations and supervisions. We are also
interested in exploring how it will perform in other domains.
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Broader Impact

Reinforcement learning has been applied to various domains for learning decision-making agents,
including games, intelligent control, robotics, finance and data analytics. Reinforcement learning
tends to suffer poor generalization performance when the trained agent is deployed in a new environ-
ment. This work proposes a simple data augmentation based solution that substantially improves RL
agents’ generalization performance. This work would have following positive influences in this field.
The proposed method is simple and easy to deploy, and would improve generalization performance
and robustness of RL agents in various environments. This will be inspiring for following research
works, and also benefit deployment of RL agents in practice and help develop trustworthy agents.
On the flip-over side, the effectiveness of the proposed method is only verified in the game domain.
It remains unclear how it will perform in other domains like finance, where the data have different
modalities. Improper deployment of the proposed method may even worsen the performance of the
RL agents trained with the proposed method and hurt the quality of output decisions.
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