
Appendix A Application of mixreg to PPO and Rainbow

A.1 PPO

Background Proximal Policy Optimization (PPO) [12] introduces a novel objective function,
resulting in a policy gradient method which is simpler, more general and performs better than
previous work Trust Region Policy Optimization (TRPO) [10]. In each update, the algorithm collects
a batch of transition samples using a rollout policy πθold(at|st) and maximizes a clipped surrogate
objective:

LCLIP(θ) = Êt [min(rt(θ)At, clip(rt(θ), 1− ε, 1 + ε)At)] , (9)

where rt(θ) denotes the probability ratio rt(θ) = πθ(at|st)
πθold (at|st) , At is the advantage at timestep t

estimated by generalized advantage estimation (GAE) [11] and ε is a hyperparameter controlling the
width of the clipping interval. GAE makes use of a learned state-value function V (s) for computing
the advantage estimation. To learn the value function, the following loss is adopted:

LV (θ) = Êt
[

1

2
max

(
(Vθ − V targ

t)2, (clip(Vθ, Vθold − ε, Vθold + ε)− V targ
t)2

)]
, (10)

where V targ
t is the bootstrapped value function target. Besides, an entropy bonus is often added to

ensure sufficient exploration:
LH(θ) = Êt [H[πθ](st)] . (11)

Putting the above losses together, the overall minimization objective of PPO is:

LPPO(θ) = −LCLIP(θ) + λV L
V (θ)− λHLH(θ), (12)

where λV , λH are the coefficients to adjust the relative importance of each component. The algorithm
alternates between sampling trajectory data using the policy and performing optimization on the
collected data based on the above loss.

Applying mixreg At each update, we randomly draw two transitions i, j from the collected batch of
transitions and convexly combine the observations and the associated supervision signals as follows:

s̃ = λsi + (1− λ)sj ,

π̃θold = λπθold(ai|si) + (1− λ)πθold(aj |sj),
Ṽθold = λVθold(si) + (1− λ)Vθold(sj),

Ṽ targ = λV targ
i + (1− λ)V targ

j ,

Ã = λAi + (1− λ)Aj .

(13)

Since we deal with discrete actions, the interpolated action ã is simply ai if λ ≥ 0.5 or aj otherwise.
The optimization is performed on the generated batch of mixed transitions and each part of the overall
objective in Eqn. (12) now becomes

L̃CLIP(θ) = Ei,j
[
min(r̃(θ)Ã, clip(r̃(θ), 1− ε, 1 + ε)Ã)

]
where r̃(θ) =

πθ(ã|s̃)
π̃θold

, (14)

L̃V (θ) = Ei,j
[

1

2
max

(
(Vθ(s̃)− Ṽ targ)2, (clip(Vθ(s̃), Ṽθold − ε, Ṽθold + ε)− Ṽ targ)2

)]
, (15)

L̃H(θ) = Ei,j [H[πθ](s̃)] . (16)

A.2 Rainbow

Background Rainbow [6] combines the following six extensions for the DQN algorithm: double
DQN [14], prioritized replay [9], dueling networks [15], multi-step learning [13], distributional
RL [1] and Noisy Nets [5]. As in distributional RL [1], Rainbow learns to approximate the distri-
bution of returns instead of the expected return. At each update, the algorithm samples a batch of
transitions from the replay buffer and minimizes the following Kullbeck-Leibler divergence between
the predicted distribution and the target distribution of returns:

Êt
[
DKL(Φzd

(n)
t ‖dt)

]
. (17)

12

Here dt denotes the predicted distribution with discrete support z and probability masses pθ(st, at)
and d(n)

t denotes the target distribution with discrete support R(n)
t + γ

(n)
t z and probability masses

pθ̄(st+n, a
∗
t+n), where a∗t+n denotes the bootstrap action. The target distribution is constructed by

contracting the value distribution in st+n according to the cumulative discount γ(n)
t and shifting it

by the truncated n-step discounted return R(n)
t ≡

∑n−1
k=0 γ

(k)
t Rt+k+1, where γkt =

∏k
i=1 γt+i with

γt = γ except on episode termination where γt = 0. Φ is a L2-projection of the target distribution
onto the support z. The bootstrap action a∗t+n is greedily selected by the online network and evaluated
by the target network. Following prioritized replay [9], Rainbow prioritizes transitions by the KL loss.
Rainbow uses a dueling network architecture adapted for use with return distributions. Following
Noisy Nets [5], all linear layers are replaced with their noisy equivalent.

Applying mixreg Similarly, at each update, we randomly draw two transitions i, j from the sampled
batch of transitions and interpolate the observations and the associated supervision signals:

s̃ = λsi + (1− λ)sj ,

p̃θ̄ = λpθ̄(si+n, ã
∗) + (1− λ)pθ̄(sj+n, ã

∗),

R̃(n) = λR
(n)
i + (1− λ)R

(n)
j ,

(18)

where ã∗ is a∗i+n if λ ≥ 0.5 or a∗j+n otherwise. Note that mixing pθ̄ corresponds to mixing Q-value
mentioned in Section 3.3 since Qθ̄(s, a) = z>pθ(s, a). The optimization objective in Eqn. (17) now
becomes

Êt
[
DKL(Φzd̃

(n)
t ‖d̃t)

]
. (19)

Here d̃t is the new predicted distribution with probability masses pθ(s̃, ã) where ã is ai if λ ≥ 0.5

or aj otherwise, and d̃(n)
t is the new target distribution with discrete support R̃(n) + γ̃(n)z and

probability masses p̃θ̄ where γ̃(n) is γ(n)
i if λ ≥ 0.5 or γ(n)

j otherwise.

Appendix B On the smoothness of the learned policy and value function

In this part, we provide additional results to demonstrate that mixreg helps learn a smooth policy
and value function. Figure 11 plots the learned value function in Figure 2 in 3D space for better
illustration. The color map is slightly different from the one used in Figure 2 but this does not affect
the result. Moreover, we compute the empirical Lipschitz constant [17] of the trained network, i.e.
calculating the following ratio for each pair of observations si, sj and taking the maximum:

‖f(si)− f(sj)‖
‖si − sj‖

(20)

where f(s) denotes the latent representation of observation s. Specifically, We collect a batch of
observations and sample 106 pairs for estimating the empirical Lipschitz constant. The results are
aggregated in box plots, shown in Figure 10. We can see that the network trained with mixreg has
smaller empirical Lipschitz constant compared to the PPO baseline, implying that mixreg helps learn
smoother policy.

Figure 10: The distribution of the calculated ratios from 106 randomly sampled pairs of observations.
The largest ratio corresponds to the estimated empirical Lipschitz constant.

13

Figure 11: 3D visualization of the learned state-value functions V (s) in PPO for 6 game environments.

14

Appendix C Implementation details and hyperparameters

Due to high computation cost, we choose 6 out of 16 environments from the Procgen benchmark.
Among the 16 environments, we first exclude 3 environments (Chaser, Leaper, Bossfight) which
do not exhibit large generalization gap under 500 level generalization protocol. We then exclude two
difficult games (Maze and Heist) where we find the trained policy by PPO performs comparably
to a random policy. In the remaining 11 games, we randomly choose 6 environments (Caveflyer,
Climber, Dodgeball, Fruitbot, Jumper, Starpilot) for evaluating different methods.

Following [2], we use the convolutional architecture proposed in IMPALA [4]. When applying
batch normalization, we add a batch normalization layer after each convolution layer following the
implementation1 in [3]. When applying `2 regularization, we use a weight 10−4 as suggested by [3].
For cutout-color and random convolution, we follow the official implementation2 in [7]. As the
official implementation of random crop is problematic3 (cropping 64× 64 window out of 64× 64
observation), we implement our own version of random crop by first resizing observations to 75× 75
and then randomly cropping with a 64 × 64 window. For network randomization method [8], we
follow their implementation4 but do not adopt the Monte Carlo approximation with multiple samples
during inference.

For both PPO and Rainbow experiments, we use the same hyperparameters as in [2] except for
the ones with † in the following tables. For PPO experiments, we halve the number of workers
but double the number of environments per worker to fit our hardware. This should result in little
difference on performance and we are able to reproduce the results in [2]. For Rainbow experiments,
as the implementation in [2] is not available, we follow the implementation in anyrl-py5 and some
hyperparameters (denoted with †) in retro-baselines6. Rmax is the normalization constant used in [2]
and the distributional min value is changed to -5 in FruitBot.

PPO

Env. distribution mode Hard
γ .999
λ .95

timesteps per rollout 256
Epochs per rollout 3

minibatches per epoch 8
Entropy bonus coefficient (λH) .01

Value loss coefficient (λV) .5
Gradient clipping (`2 norm) .5

PPO clip range .2
Reward normalization? Yes

Learning rate 5× 10−4

†# workers 2
†# environments per worker 128

Total timesteps 200M
LSTM? No

Frame stack? No
beta distribution parameter α 0.2

Rainbow

Env. distribution mode Hard
γ .999

Learning rate 2.5× 10−4

workers 8
environments per worker 64

env. steps per update per worker 64
Batch size per worker 512

Reward clipping? No
Distributional min/max values [0, Rmax]

†Memory size 500K
†Min history to start learning 20K

Exploration ε 0.0
Noisy Nets σ0 0.5

†Target network period 8192
Adam ε 1.5× 10−4

Prioritization exponent ω 0.5
†Prioritization importance sampling β 0.4

Multi-step returns n 3
Distributional atoms 51

Total timesteps 200M
LSTM? No

Frame stack? No
beta distribution parameter α 0.2

1https://github.com/openai/coinrun
2https://github.com/pokaxpoka/rad_procgen
3https://github.com/pokaxpoka/rad_procgen/issues/1
4https://github.com/pokaxpoka/netrand
5https://github.com/unixpickle/anyrl-py
6https://github.com/openai/retro-baselines

15

https://github.com/openai/coinrun
https://github.com/pokaxpoka/rad_procgen
https://github.com/pokaxpoka/rad_procgen/issues/1
https://github.com/pokaxpoka/netrand
https://github.com/unixpickle/anyrl-py
https://github.com/openai/retro-baselines

Appendix D Ablation results of varying the beta distribution parameter α

For the beta distribution Beta(α, α) used to draw mixing coefficient λ, we choose α = 0.2 from the
interval [0.1, 0.4] suggested by [16]. We also test different α and plot the results in Figure 12. Using
too large α (e.g. 1.0) leads to performance degradation in certain environments.

Figure 12: Training and testing performance of mixreg with different parameter α for Beta(α, α).

16

Appendix E Additional results and training curves on Procgen

E.1 Comparing different methods on 500 level generalization in 6 environments

Figure 13: Training and testing performance of different methods on 500 level generalization.

Figure 14: Mean normalized score of different methods on 500 level generalization.

17

E.2 Comparing mixreg with PPO baseline on 500 level generalization in all 16 environments

Figure 15: Training and testing performance on 500 level generalization in 16 environments.

Figure 16: Mean normalized score on 500 level generalization averaged over 16 environments.

18

E.3 Combining mixreg with other methods on 500 level generalization

Figure 17: Training and testing performance of combining mixreg and other methods on 500 level
generalization.

E.4 Scaling model size

Figure 18: Mean normalized score w.r.t. different model sizes on 500 level generalization.

19

E.5 Varying the number of training levels

Figure 19: Training and testing performance w.r.t. different number of training levels.

Figure 20: Mean normalized score w.r.t. different number of training levels.

20

References
[1] Bellemare, M. G., Dabney, W., and Munos, R. (2017). A distributional perspective on reinforce-

ment learning. In Proceedings of the 34th International Conference on Machine Learning-Volume
70, pages 449–458. JMLR. org.

[2] Cobbe, K., Hesse, C., Hilton, J., and Schulman, J. (2019). Leveraging procedural generation to
benchmark reinforcement learning. arXiv preprint arXiv:1912.01588.

[3] Cobbe, K., Klimov, O., Hesse, C., Kim, T., and Schulman, J. (2018). Quantifying generalization
in reinforcement learning. arXiv preprint arXiv:1812.02341.

[4] Espeholt, L., Soyer, H., Munos, R., Simonyan, K., Mnih, V., Ward, T., Doron, Y., Firoiu, V.,
Harley, T., Dunning, I., et al. (2018). Impala: Scalable distributed deep-rl with importance
weighted actor-learner architectures. arXiv preprint arXiv:1802.01561.

[5] Fortunato, M., Azar, M. G., Piot, B., Menick, J., Osband, I., Graves, A., Mnih, V., Munos,
R., Hassabis, D., Pietquin, O., et al. (2017). Noisy networks for exploration. arXiv preprint
arXiv:1706.10295.

[6] Hessel, M., Modayil, J., Van Hasselt, H., Schaul, T., Ostrovski, G., Dabney, W., Horgan, D., Piot,
B., Azar, M., and Silver, D. (2018). Rainbow: Combining improvements in deep reinforcement
learning. In Thirty-Second AAAI Conference on Artificial Intelligence.

[7] Laskin, M., Lee, K., Stooke, A., Pinto, L., Abbeel, P., and Srinivas, A. (2020). Reinforcement
learning with augmented data. arXiv preprint arXiv:2004.14990.

[8] Lee, K., Lee, K., Shin, J., and Lee, H. (2020). Network randomization: A simple technique
for generalization in deep reinforcement learning. In International Conference on Learning
Representations. https://openreview. net/forum.

[9] Schaul, T., Quan, J., Antonoglou, I., and Silver, D. (2015). Prioritized experience replay. arXiv
preprint arXiv:1511.05952.

[10] Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz, P. (2015a). Trust region policy
optimization. In International conference on machine learning, pages 1889–1897.

[11] Schulman, J., Moritz, P., Levine, S., Jordan, M., and Abbeel, P. (2015b). High-dimensional
continuous control using generalized advantage estimation. arXiv preprint arXiv:1506.02438.

[12] Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017). Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347.

[13] Sutton, R. S. (1988). Learning to predict by the methods of temporal differences. Machine
learning, 3(1):9–44.

[14] Van Hasselt, H., Guez, A., and Silver, D. (2016). Deep reinforcement learning with double
q-learning. In Thirtieth AAAI conference on artificial intelligence.

[15] Wang, Z., Schaul, T., Hessel, M., Van Hasselt, H., Lanctot, M., and De Freitas, N. (2015).
Dueling network architectures for deep reinforcement learning. arXiv preprint arXiv:1511.06581.

[16] Zhang, H., Cisse, M., Dauphin, Y. N., and Lopez-Paz, D. (2017). mixup: Beyond empirical risk
minimization. arXiv preprint arXiv:1710.09412.

[17] Zou, D., Balan, R., and Singh, M. (2019). On lipschitz bounds of general convolutional neural
networks. IEEE Transactions on Information Theory.

21

	Application of mixreg to PPO and Rainbow
	PPO
	Rainbow

	On the smoothness of the learned policy and value function
	Implementation details and hyperparameters
	Ablation results of varying the beta distribution parameter alpha
	Additional results and training curves on Procgen
	Comparing different methods on 500 level generalization in 6 environments
	Comparing mixreg with PPO baseline on 500 level generalization in all 16 environments
	Combining mixreg with other methods on 500 level generalization
	Scaling model size
	Varying the number of training levels

