
APPENDIX A: Demystifying Orthogonal Monte Carlo and Beyond - Proofs
of Theoretical Results

For the convenience of Reader, here we restate the theorems first and then present their proofs.

8.1 Proof of Lemma 1

Proof. From the definition of negative dependence, what we need to prove is:
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where we use x̃i to represent a different value than the original xi, which should be f−1(xi). We
will illustrate how to prove the first inequality here since the other can be proved accordingly.

Firstly, we know from the definition of isotropic probabilistic distribution that if wort
i ∼ D, then wort

i
can be rewritten as wort

i = vort
i li, where vort

i has unit length, and li is taken independently from vort
i ,

which represents the length scalar [15]. So we need to prove the following:
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But actually since negatively dependence should holds for any xi ∈ R, so it actually does not matters
which scalar we use in the right hand side of each part of the probability inequality. So we will
continue to use xi instead of x̃ili in the following proof.

Furthermore, we assume ‖z‖2 = 1 without loss of generality. Proof for the cases when xi ≥ 1 or
xi ≤ 0 is trivial under such assumption, so we will only concentrate on the case when 0 < xj < 1.
Here, we can use a second trick for distribution transformation. We regard vort

1 , vort
2 , ..., vort

d as fixed,
and z as a random rotation vector, so that we can replace vort

1 , vort
2 , ..., vort

d as e1, e2, ..., ed and z be
a unit length vector uniformly distributed on the Sd−1. After such transformation, the distribution
of |vort
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, where g is a gaussian vector, and gi is its length of

projection onto the ith coordinate.

So the problem we need to prove is transformed to the following inequality:
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From the rule of conditional probability, the LHS can be transformed to:
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until the conditional probability of gd
‖g‖2

on all gi
‖g‖2

for i = 1, 2, ..., d− 1 .

Therefore, we conclude that we only need to prove the following for each corresponding term i:
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which can be rewritten as:
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We can also rewrite from gi
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which finishes our proof of negative dependence.

We can conclude that:
Lemma 1 (ND for OMC-samples and monotone functions). For an isotropic distribution D on Rd
and orthogonal ensemble: ωort

1 , ..., ωort
d with ωort

i ∼ D, random variables:X1, ..., Xd defined as:
Xi = |ωort

i z| are negatively dependent for any fixed z ∈ Rd.

8.2 Proof of Lemma 2

To prove Lemma 2, we will use the following result [4], [25]:
Lemma 4. Let X1, . . . , Xn be negatively dependent random variables, then:

• If f1, . . . , fn is a sequence of measurable functions which are all monotone non-decreasing
(or all are monotone non-increasing), then f1(X1), . . . , fn(Xn) are also negatively depen-
dent random variables.

• E[X1. . .Xn] ≤ E[X1]. . .E[Xn], provided the expectation exist.

Lemma 2. Assume that f is a function from the class F1. Let Xi = f(ωort
i
>

z) for i = 1, ..., n, and
let λ be a non-positive (or non-negative) real number. Then the following holds:
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Proof. By Lemma 1 and the first point iof Lemma 4, we know that X1, ..., Xn are negatively
dependent. Then, by applying the second point in Lemma 4, we know that:

E[f1(X1). . . fn(Xn)] ≤ E[f1(X1)]. . .E[fn(Xn)] (21)

If λ ≥ 0, we can take a non-decreasing function fi(Xi) = eλXi for each i, then:

E[exp(λ

m∑
i=1

Xi)] ≤
m∏
i=1

E[eλXi ] (22)

Similarly, if λ ≤ 0, then we can take a non-increasing function fi(Xi) = eλXi , and this inequality will
also be true. Actually, we say that X1, ...Xn are acceptable if the inequality E[exp(λ

∑m
i=1Xi)] ≤∏m

i=1 E[eλXi ] holds for any real λ [4].
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8.3 Proof of Corollary 1

Corollary 1 (exponentials of OMCs and MCs). Let z ∈ Rd and assume that function f : R → R
is from the class F1. Take an isotropic distribution D on Rd, an ensemble of independent samples
ωiid

1 , ..., ωiid
s and an orthogonal ensemble ωort

1 , ..., ωort
s giving rise to base MC estimator F̂ iid

f,D(z) of

Eω∼D[f(ω>z)] and to its orthogonal version F̂ ort
f,D(z). Then the following is true for any λ:

E[eλF̂
ort
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Proof. From Lemma 1 and Lemma 2, we can derive directly that if the function f is monotone
increasing (or decreasing) in |ω>i z|, and we define F̂ ort

f,D(z) and F̂ iid
f,D(z) as the orthogonal and iid

estimates for Eω∼D[fZ(ω)], then the ND of |ωort1
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which is exactly the inequality in this Corollary.

For s = kd where k is a multiplier larger than 1, we can define F̂ ort
f,D(z) as the estimator constructed

by stacking k independent orthogonal blocks together with dimension d, and F̂ iid
f,D(z) as the base

estimator with s samples. The proof in such case is trivial since we can decompose E[exp(λF̂ ort
f,D(z))]

into the multiplication of k expectations of independent blocks, and then use Eq. 23 again.

8.4 Proof of Theorem 1

Theorem 1 (OMC-bounds surpassing MC-bounds for the F1-class). Denote by MSE a mean squared
error of the estimator, by s the number of MC samples used and let X = f(ω>z) for ω ∼ D. Then
under assumptions as in Corollary 1, OMC leads to the unbiased estimator satisfying for ε > 0:

P[|F̂ ort
f,D(z)− Ff,D(z)| ≥ ε] ≤ p(ε), (5)

where p(ε) is defined as: p(ε) def
= exp(−sLX(Ff,D(z)+ε)+exp(−sLX(Ff,D(z)−ε) for unbounded

f , and is defined as p(ε) def
= 2 exp(− 2sε2

(b−a)2
) for bounded f ∈ [a, b], which is a standard upper bound

on P[|F̂ iid
f,D(z)− Ff,D(z)| ≥ ε]. Furthermore: MSE(F̂ ort

f,D(z)) ≤ MSE(F̂ iid
f,D(z)).

Proof. Let’s first work on the case when function f is bounded. In such case, we can apply Chernoff-
Hoeffdings inequality for iid estimators to p(ε), which is 2 exp(− 2sε2

(b−a)2
).

For λ > 0, ε ∈ R, we apply Markov inequality here:

P[F̂ ort
f,D(z)− Ff,D(z) ≥ ε] = P[eλ(F̂ ort

f,D(z)−Ff,D(z)) ≥ eλε]

≤ e−λεE[eλ(F̂ ort
f,D(z)−Ff,D(z))] = e−λεe−λFf,D(z)E[eλF̂

ort
f,D(z)]

(24)

Similarly, for iid estimator, we have:

P[F̂ iid
f,D(z)− Ff,D(z) ≥ ε] = e−λεe−λFf,D(z)E[eλF̂

iid
f,D(z)] (25)

From Corollary 1, we know directly that orthogonal estimator has better upper bound than iid
estimator.

For λ < 0,
P[F̂ ort

f,D(z)− Ff,D(z) ≤ −ε] = P[eλ(F̂ ort
f,D(z)−Ff,D(z)) ≥ eλε] (26)

E[eλF̂
ort
f,D(z)] ≤ E[eλF̂

iid
f,D(z)] in Corollary 1 also guarantees better lower bound than iid estimator.
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By combining these two cases, we know that P[|F̂ ort
f,D(z) − Ff,D(z)| ≥ ε] has better bound than

P[|F̂ iid
f,D(z)− Ff,D(z)| ≥ ε].

Then for unbounded function f , we can apply Craḿer-Chernoff bound to p(ε). We rewrite several
steps here to show:

p(ε) = exp{−s(LX(Ff,D(z)) + ε)}+ exp{−s(LX(Ff,D(z))− ε)}
which is the bound for iid estimator.
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(θ(Ff,D(z) + ε)− logE[eθ(fZ (ωiid
i ))])}

+ exp{−s sup
θ<0

(−θ(Ff,D(z)− ε)− logE[eθ(fZ (ωiid
i ))])}

= exp{−s(LX(Ff,D(z)) + ε)}+ exp{−s(LX(Ff,D(z))− ε)} (27)

where LX(a) = supθ>0 log( eθa

MX(θ) ) if a > E[X] and LX(a) = supθ<0 log( eθa

MX(θ) ) if a < E[X].

The proof for the superiority of orthogonal estimator is similar as above, and we include it here for
completeness.

For λ > 0, ε ∈ R, we have:

P[F̂ ort
f,D(z)− Ff,D(z) ≥ ε] ≤ exp{− sup

θ>0
(λε− logE[e

λ(F̂ort
f,D(z)−Ff,D(z))

])}

= exp{− sup
θ>0

(λ(ε+ Ff,D(z))− logE[e
λ(F̂ort

f,D(z))
])} (28)

We can derive similarly such probability bound for iid estimator. Then by applying Corollary 1, we

know that logE[e
λF̂ort
f,D(z)

] ≤ logE[e
λF̂ iid
f,D(z)

]. With such relationship, we know directly that orthogonal
estimator has better upper bound than iid estimator.

The same follows for λ < 0. And we can combine these two cases and derive that P[|F̂ ort
f,D(z) −

Ff,D(z)| ≥ ε] has better bound than P[|F̂ iid
f,D(z)− Ff,D(z)| ≥ ε].

Finally, for the MSE of the iid estimator, we know from the independence of (ωi)
s
i=1 that:

MSE(F̂ iid
f,D(z)) =

1

s2

s∑
i=1

Var[f(ω>i z)] =
1

s
Var[f(ω>1 z)] (29)
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We can also decompose the MSE of orthogonal estimator as:

MSE(F̂ ort
f,D(z)) =

1

s
Var[f(ω>1 z)] +

1

s2

∑
i 6=j

(E[f(ω>i z)f(ω>j z)]− E[f(ω>i z)]E[f(ω>j z)]) (30)

Since a subset of two ND variables are also ND, the ND of (f(ω>i z))si=1 implies that the second part
of MSE(F̂ ort

f,D(z)) is negative, which completes the proof.

We further notice that since D is an isotropic probability distribution on Rd which is rotation
invariant, then for ω ∼ D and an odd function odd[f ], we have P(ω) = P(−ω) and odd[f ](ω>z) =
−odd[f ](−ω>z). Therefore,

Fodd[f ],D = Eω∼D[odd[f ](ω>z)] =

∫
D

odd[f ](ω>z)dP(ω) = 0 (31)

8.5 Proof of Theorem 2

Theorem 2 (Exponential bounds for OMCs and F2/F3 classes). Let z ∈ Rd and assume that
function f : R→ R is from the class F2 or F3. Then for ε > 0:

P[|F̂ ort
f,D(z)− Ff,D(z)| ≥ ε] ≤ p(ε) def

= u+ + u−, (6)

where u+/− def
= exp(−sLX+/−(Ff,D(z)+ ε

2 )+exp(−sLX+/−(Ff,D(z)− ε
2 ), andX+/− is defined

as: X+/− def
= f+/− if f is from F2 and as: X+/− def

= (even[f ])+/− if f is from F3. As before,

in the bounded case we can simplify u+ and u− to: u+/− def
= 2 exp(− sε2

2(b+/−−a+/−)2
), where

a+, b+, a−, b− are lower and upper bounds such that: f+ ∈ [a+, b+] and f− ∈ [a−, b−] if f is
from F2 or (even[f ])+ ∈ [a+, b+] and (even[f ])− ∈ [a−, b−] if f is from F3. Furthermore, if
(even[f ])+ = 0 or (even[f ])− = 0, we can tighten that bound using upper bound from Theorem 1
and thus, establish better concentration bounds than for base MC.

Proof. Firstly, we decompose the estimator into increasing and decreasing parts as stated in F2:

F̂ ort
f,D(z) =

1

s

s∑
i=1

f(|ωort
i
>

z|) =
1

s

s∑
i=1

f+(|ωort
i
>

z|) +
1

s

s∑
i=1

f−(|ωorti
>

z|)

def
= F̂ ort,+

f,D (z) + F̂ ort,−
f,D (z) (32)

which are ND respectively.

For bounded function f , we can apply Chernoff–Hoeffding inequalities for ND random variables
[21] and have:

P[|F̂ ort,+
f,D (z)− F+

f,D(z)| ≥ ε] ≤ 2 exp(− 2sε2

(b+ − a+)
2 ) (33)

P[|F̂ ort,−
f,D (z)− F−f,D(z)| ≥ ε] ≤ 2 exp(− 2sε2

(b− − a−)
2 ) (34)

Therefore,

P[|F̂ ort
f,D(z)− Ff,D(z)| ≥ ε]

= P[|F̂ ort,+
f,D (z) + F̂ ort,−

f,D (z)− F+
f,D(z)− F−f,D(z)| ≥ ε]

≤ P[|F̂ ort,+
f,D (z)− F+

f,D(z)|+ |F̂ ort,−
f,D (z)− F−f,D(z)| ≥ ε]

≤ P[|F̂ ort,+
f,D (z)− F+

f,D(z)| ≥ ε

2
] + P[|F̂ ort,−

f,D (z)− F−f,D(z)| ≥ ε

2
]

≤ 2 exp(− sε2

2(b+ − a+)
2 ) + 2 exp(− sε2

2(b− − a−)
2 ) (35)
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This procedure can be adapted to the case of unbounded function f with similar steps in Theorem 1,
so we skip it.

8.6 Proof of Theorem 3

Theorem 3 (Uniform convergence for OMCs). LetM⊆ Rd be compact with diameter diam(M).
Assume that f has Lipschitz constant Lf . Then under assumptions as in Theorem 1 / 2, for any r > 0:

P[ sup
z∈M

|F̂ ort
f,D(z)− Ff,D(z)| ≥ ε] ≤ C(

diam(M)

r
)d · p(ε/2) + (

2rσLf
ε

)2, (7)

where σ2 = Eω∼D[ωTω] (i.e. the second moment of D), p is as in RHS of inequality from Theorem 1
/ 2 and C > 0 is a universal constant. In particular, if boundedness conditions from Theorem 1 / 2
are satisfied, one can take: s = Θ( dε2 log(

σLfdiam(M)
ε )) to get uniform ε-error approximation with

any constant probability (e.g s = Θ( dε2 log(
dLfdiam(M)

ε )) for Gaussian kernel for which σ = d).

Proof. Motivated by [34], the uniform convergence for OMCs can be proved in the following
way. Define g(z) = F̂ ort

f,D(z) − Ff,D(z). Given the definition of F̂ ort
f,D(z), it is unbiased, i.e.

E[g(z)] = E[F̂ ort
f,D(z)− Ff,D(z)] = 0.

LetM ⊆ Rd be compact with diameter diam(M) and z ∈ M. We can find a ε-net such that it
can coversM with at most P = ( 4diam(M)

r )d balls of radius r. Denote {zi}Pi=1 as the centers of
the these balls. If |g(zi)| < ε

2 and Lipschitz constant Lg of g satisfies: Lg < ε
2r ,∀i ∈ [P ], then

|g(z)| < ε. By applying the union bound followed by Hoeffding’s inequality applied to the anchors
in the ε-net, we can have the following:

P[

P⋃
i=1

|g(zi)| ≥
ε

2
] ≤ P · p( ε

2
) (36)

If f is differentiable, Lg = maxz∈M ||∇g(z∗)||. From the linearity of expectation, we can have
E[∇F̂ ort

f,D(z)] = ∇Ff,D(z), therefore we can have:

E[L2
g] = E[||∇F̂ ort

f,D(z∗)−∇Ff,D(z∗)||2]

= E[||∇F̂ ort
f,D(z∗)||2 + ||∇Ff,D(z∗)||2 − 2∇F̂ ort

f,D(z∗)
T
∇Ff,D(z∗)]

= E[||∇F̂ ort
f,D(z∗)||2] + E[||∇Ff,D(z∗)||2]− 2E[||∇Ff,D(z∗)||2]

= E[||∇F̂ ort
f,D(z∗)||2]− E[||∇Ff,D(z∗)||2]

= E[||∇F̂ ort
f,D(z∗)||2]− ||∇Ff,D(z∗)||2 (37)

Therefore, E[L2
g] ≤ E[||∇F̂ ort

f,D(z∗)||2] ≤ ED[||ωLf ||2] = σ2Lf
2. Finally, if f is not differentiable,

we can obtain exactly the same bound via standard finite-difference analysis.
According to the Markov Inequality, we have the following:

P[Lg ≥
ε

2r
] ≤ (

2rσLf
ε

)2. (38)

Thus, by union bound, we can conclude that:

P[ sup
z∈M

|g(z)| ≥ ε] ≤ (
4diam(M)

r
)d · p( ε

2
) + (

2rσLf
ε

)2, (39)

which is our results for general f . Now let us consider the case when f is bounded. For the case of
F1, we can let p(ε) = 2 exp(− 2sε2

(b−a)2 ). Then:

P[ sup
z∈M

|g(z)| ≥ ε] ≤ 2(
4diam(M)

r
)d exp(− sε2

2(b− a)2
) + (

2rσLf
ε

)2 (40)
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For the case of F2/F3, we can have: p(ε) = 2(exp(− sε2

2(b+−a+)2
) + exp(− sε2

2(b−−a−)2
)). Then:

P[ sup
z∈M

|g(z)| ≥ ε] ≤ 2(
4diam(M)

r
)d[exp(− sε2

8(b+ − a+)
2 ) + exp(− sε2

8(b− − a−)
2 )] + (

2rσLf
ε

)2

(41)
One can take C = 2 · 4d here. In order to find smallest s such that F1/F2/F3 can satisfy this bound,
we can optimize for r and this is how we get the asymptotic value of the number of samples s that
provides ε-accuracy (we assume here that bounds on f are constants):

s = Θ(
d

ε2
log(

σLfdiam(M)

ε
)). (42)

Another case is that f is unbounded, For the case of F1, we can let p(ε) = exp{−s(LX(Ff,D(z)) +
ε)}+ exp{−s(LX(Ff,D(z))− ε)}. Then:

P[ sup
z∈M

|g(z)| ≥ ε] ≤ (
4diam(M)

r
)d · (exp{−s(LX(Ff,D(z)) +

ε

2
)}

+ exp{−s(LX(Ff,D(z))− ε

2
)}) + (

2rσLf
ε

)2 (43)

For the case of F2/F3, we can have: p(ε) = exp(−sLX+(Ff,D(z) + ε
2 ) + exp(−sLX+(Ff,D(z)−

ε
2 ) + exp(−sLX−(Ff,D(z) + ε

2 ) + exp(−sLX−(Ff,D(z)− ε
2 )). Then:

P[ sup
z∈M

|g(z)| ≥ ε] ≤ (
4diam(M)

r
)d · [exp(−sLX+(Ff,D(z) +

ε

4
))

+ exp(−sLX+(Ff,D(z)− ε

4
))

+ exp(−sLX−(Ff,D(z) +
ε

4
))

+ exp(−sLX−(Ff,D(z)− ε

4
))] + (

2rσLf
ε

)2 (44)

Still, one can take C = 2 · 4d here. In order to find smallest s such that F1/F2/F3 can satisfy the
bound, we optimize for r and get the asymptotic value of the number of sample s that provides
ε-accuracy(we assume LX(Ff,D(z)) or LX+/−(Ff,D(z)) mentioned in Theorem 1 and Theorem 2
are constants:

s = Θ(d log(
Lfσ(diam(M))

ε
)) (45)

8.7 On the Uniform Convergence of OMCs for Improving OMC Kernel Ridge Regression
Guarantees

Recalling the setting in Theorem 2 of [11]:

Theorem 4. Assume that a dataset X = {x1, x2, ..., xn} is taken from a ball B of a fixed radius r
which is independent to the dimensionality of the data n, and size of dataset N , and the center x0.

Consider kernel ridge regression adopting a smooth RBF kernel, especially Gaussian ker-
nel. Let ∆̂iid denote the smallest positive number such that K̂iid + λNIN is a ∆-approximation of
K + λNIN , where K̂iid is an approximate kernel matrix obtained by using unstructured random
features. Then for any a > 0,

P[∆̂iid > a] ≤ piidN,m(
aσmin
N

), (46)

where piidN,m = N2e−Cmx
2

for some universal constant C > 0, m is the number of random features
used, σmin is the smallest singular value of K̂+λNIN andN is the dataset size. If instead orthogonal
random features are used then for the corresponding spectral parameter ∆̂ort the following holds:

P[∆̂ort > a] ≤ portN,m(
aσmin
N

), (47)

19



where function portN,m satisfies: portN,m < piidN,m, for n large enough.

Based on this original version, we would like to offer a refined version as the following:

Rather than having piidN,m = N2e−Cmx
2

, we can further remove N2 by exploiting uniform
convergence property if z = xi − xj is in a compact set, xi, xj are arbitrary two datapoints in the
dataset, meaning that

piidN,m = e−Cmx
2

(48)

Following the same logic, we can still have portN,m < piidN,m, for n large enough, resulting in a much
stronger guarantee for kernel ridge regression. Proof is the following:

Proof. Motivated by [11], we can even substantially improve theoretical guarantees offered in its
Theorem 2 with the uniform convergence property that we derived above. In order to achieve it, we
will improve the Lemma 1 of [11]. We discuss all steps in detail below.

For an RBF kernel K : Rn × Rn, with a corresponding random feature map: Φm.n : Rn → R2m,
we can approximate it with a randomized kernel estimator K̂. Assume that for any i, j ∈ [N ], the
following holds for any c > 0 : P[|Φm,n(xi)

TΦm,n(xj) −K(xi, xj)| > c] ≤ g(c) for some fixed
function g : R → R. Then with probability at least 1 − g(c), matrix K̂ + λIN is a ∆-spectral
approximation of matrix K + λIN for ∆ = Nc

σmin
, where σmin stands for the minimal singular value

of K + λIN .

Denote K + λNIN = VTΣ2V, where an orthogonal matrix V ∈ RN×N and a diagonal matrix
Σ ∈ RN×N define the eigendecomposition of K + λNIN. As shown in the paper, in order to prove
that K̂ + λNIN is a ∆-spectral approximation of K + λNIN , it suffices to show that:

||Σ−1VK̂VTΣ−1 −Σ−1VKVTΣ−1||2 ≤ ∆ (49)

With the definition of l2 norm and Frobenius norm, we can have:

P[||Σ−1VK̂VTΣ−1 −Σ−1VKVTΣ−1||2 > ∆]

≤ P[||Σ−1V||K̂−K||FVTΣ−1||2 > ∆]

= P[||K̂−K||2F >
∆2

||Σ−1V||22 · ||VTΣ−1||22
]

≤ P[||K̂−K||2F > ∆2σ2
min]. (50)

The last inequality we use the fact that ||Σ−1V||22 ≤ 1
σmin

and ||VTΣ−1||22 ≤ 1
σmin

because V is
an isometric matrix.
Most importantly, we can refine the proof of lemma 1 in [11] using the uniform convergence property,
provided that z = xi − xj is in a compact set. Then the following inequalities hold:

P[||K̂−K||2F >
∆2

||Σ−1V||22 · ||VTΣ−1||22
]

≤ P[|K̂i,j −Ki,j | >
∆σmin
N

]

= P[|Φm,n(xi)
TΦm,n(xj)−Ki,j | >

∆σmin
N

] (51)

Therefore, the probability that K̂+λIN is a ∆-spectral approximation of K+λIN is at least 1−g(c)
for c = ∆σmin

N . Afterwards, we can prove lemma 2,3,4,5 in [11] in the same way. Therefore, it shows
that we can have a stronger concentration result for kernel ridge regression.

APPENDIX B: Demystifying Orthogonal Monte Carlo and Beyond -
Experiments

In our experiment with the particle algorithm (opt-NOMC), we use: η = 1.0, δ = 0.1, T = 50000.
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8.8 Clock Time Comparison for NOMC

In order to present the efficiency of our NOMC optimization procedure, we run our algorithm on
a single 6-core computer with Intel Core i7 CPU, and parameter d range from 8 to 256. The
algorithm here uses the plain gradient descent method for optimization. Please note that this wall
clock time is just a one-time cost, even if a new ensemble of samples is required at each iteration
of the higher-level algorithm. In such a case that one-time optimized ensemble is simply randomly
rotated using independently chosen random rotations, as mentioned in main text. Furthermore, we
can always improve the efficiency by multi-machine parallelization, which however is not the focus
of this work.

Figure 4: Clock time comparisons with d = 8, 16, 32, 64, 128, 256, and s = 5d. Dmax is the
maximum distance among all the points on the unit-sphere, and Dmin represents the minimum of
them. We use the difference between Dmax and Dmin as the y-axis, which should gradually decrease
with each iterations. Besides, the red point in each line represents the first position where the absolute
change in y-axis within the past 5000 iterations is below 0.01. We set parameters δ = 0.1 and η = 1
in Algorithm 1.

d 8 16 32 64 128 256
Clock Time 20 seconds 2 minutes 5 minutes 22 minutes 2 hours 14 hours

Table 8.8: Clock time comparison for different d. The time here represents the first time when the absolute
change in Dmax −Dmin within the past 5000 iterations is below 0.01 (same as the red point in Fig. 4).

8.9 Experimental Details for Kernel Approximation Experiment

In Sec.5, we present a result showing that our NOMC method indeed outperforms other algorithms.
Specifically, we adopt mean squared error (MSE) as the error measure for pointwise estimation. As
for the data set, rather than using theoretically simulated data, we adopted a variety of the data set
from the UCI Machine Learning Repository for our experiments. Due to space constraints, we only
select one of the experimental results from those data set, which is Letter Recognition Data Set. Also,
this is one of the most popular and classical experimental data set. In our experiment, we compared 8
different kernels, which is shown in the table 6.7 below. For each kernel, we tested the performance
of MC, QMC, B-OMC, NOMC for 10 multipliers, ranging from 1 to 10. For each multiplier, we
performed 450 pointwise estimations to 100 randomly sampled data pairs and calculated the average
of the MSE, in order to relieve the impact of single selection bias. Empirically, for the purpose of
ensuring the kernel values in an appropriate range, we scaled the dataset using the mean distance of
the 50th l2 nearest neighbor for 1000 sampled datapoints [43].
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This experiment is implemented in Python 3.7 and executed on a standard 1.7 GHz Dual-
Core Intel Core i7.

Kernel name Kernel function Function φ Fourier density

Gaussian σ2 exp (− 1
2λ2 )z2 cos(ωTx + b) σ2

(2πλ2)n/2
exp− 1

2λ2 ||w||22
Matérn[15] σ2 21−ν

Γ(ν)
(
√

2νz)νKν(
√

2νz) cos(ωTx + b) Γ(ν+n/2)

Γ(ν)(2νπ)n/2
(1 + ||w||2

2ν
)−ν−p/2

Cauchy[34] Πd
2

1+z2
d

cos(ωTx + b) e−||ω||1

Angular 1− 2θx,y
π

sgn(ωTx) N/A
Quadratic Eω[φ(x)φ(y)] (ωTx)2 N/A

Tanh Eω[φ(x)φ(y)] tanh(ωTx) N/A
Sine Eω[φ(x)φ(y)] sin(ωTx) N/A

Table 8.9 : Tested kernels, their corresponding kernel functions (we give compact form if it exists), mappings
φ such that K(x,y) = Eω[φ(x)φ(y)] (used in MC sampling), and Fourier denssities (valid only for hift-
invariant kernels). For Matérn kernel, Γ(·) denotes the gamma function, Kν(·) denotes the modified Bessel
function of the second kind, and ν is a non-negative parameter. Parameter λ denotes standard deviation,
z = (z1, ..., zd)

> = x− y, z = ‖z‖2 and b ∼ Unif[0, 2π].

8.10 Experimental Details for Sliced Wasserstein Distance Experiment

We run these experiments on a single 6-core computer with Intel Core i7 CPU. For the Sliced Wasser-
stein Distance experiments in Section 5, we use the same procedure as in the kernel approximation
experiments and tested on 8 classes of distributions. For each class, we have two multivariate distribu-
tions with different means and covariance matrices. Following the formula in Eq. 10, we replaced the
iid samples u ∼ Unif(Sd−1) (which is the plain MC method) with samples from multiple orthogonal
blocks, near orthogonal algorithms, and Halton sequences (which are B-OMC, NOMC and QMC
respectively). We independently sample 100 thousands data points from each of the two distributions
from the same class, and then compute the projections on the directions of u. The specific details
regarding mean and covariance matrix of each distribution are in Table 8.10. Let A be a d × d
matrix with each entry generated from standard univariate gaussian distribution. Also let D be a
d× d matrix obtained from the distribution of A by zeroing all off-diagonal values to zero. We take
M

def
= A>A/

√
d (note that A is positive semi-definite).

Distribution name Mean Covariance Matrix Parameter

Multivariate Gaussian (0, 0, ..., 0), (1, 1, ..., 1) M1,M2 N/A
Multivariate T (0, 0, ..., 0), (1, 1, ..., 1) M1,M2 df=10

Multivariate Cauchy (0, 0, ..., 0), (1, 1, ..., 1) M1,M2 N/A
Multivariate Laplace (0, 0, ..., 0), (0, 0, ..., 0) M1,M2 N/A

Gaussian Mixture Q=2 (0, ..., 0, 1, ..., 1), (1, ..., 1, 0, ..., 0) D1,D2 N/A
Gaussian Mixture Q=3 (1, 1, 1, 1, 0, ..., 0), (0, ..., 0, 1, 1, 1) D1,D2,D3 N/A

(0, ..., 0, 1, 1, 1, 0, ..., 0)
Gaussian Mixture Q=4 (1, 1, 1, 1, 0, ..., 0), (0, 0, 1, 1, 0, ..., 0) D1,D2,D3,D4 N/A

(0, ..., 0, 1, 1, 0, ..., 0), (0, ..., 0, 1, 1)
Inverse Wishart (0, 0, ..., 0), (1, 1, ..., 1) M1,M2 ν = 10

Table 8.10 : Tested classes of distributions (from each we sampled two distributions for SWD computations), their
corresponding means of modes, covariance matrices for different modes and other parameters (if applicable).
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