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Abstract

We study the problem of improving the performance of online algorithms by in-
corporating machine-learned predictions. The goal is to design algorithms that
are both consistent and robust, meaning that the algorithm performs well when
predictions are accurate and maintains worst-case guarantees. Such algorithms
have been studied in a recent line of work initiated by Lykouris and Vassilvit-
skii (ICML ’18) and Kumar, Purohit and Svitkina (NeurIPS ’18). They provide
robustness-consistency trade-offs for a variety of online problems. However, they
leave open the question of whether these trade-offs are tight, i.e., to what extent to
such trade-offs are necessary. In this paper, we provide the first set of non-trivial
lower bounds for competitive analysis using machine-learned predictions. We
focus on the classic problems of ski rental and non-clairvoyant scheduling and
provide optimal trade-offs in various settings.
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1 Introduction

The vast gains in predictive ability by machine learning models in recent years have made them an
attractive approach for algorithmic problems under uncertainty: One can train a model to predict
outcomes on historical data and then respond according to the model’s predictions in future scenarios.
For example, when renting cloud servers, a company might need to decide whether to pay on-demand
or reserve cloud servers for an entire year. The company could try to optimize their purchasing based
on a model learned from past demand. However, a central concern for applications like these is the
lack of provable bounds on worst-case performance. Modern machine learning models may produce
predictions that are embarrassingly inaccurate (e.g., [SZS+14]), especially when trying to generalize
to unfamiliar inputs. The potential for such non-robust behavior is be problematic in practice, when
users of machine learning-based systems desire at least some baseline level of performance in the
worst case.

On the other hand, the algorithms literature has long studied algorithms with worst-case guarantees.
In particular, the theory of online algorithms focuses on algorithms that perform well under uncer-
tainty, even when inputs are chosen adversarially. A key metric in this literature is the competitive
ratio, which is the ratio between the worst-case performance of an algorithm (without knowledge of
the future) and that of an offline optimal algorithm (that has full knowledge of the future).1 That is, an
algorithm with a competitive ratio of C does at most C times worse than any other algorithm, even in
hindsight. The classical study of online algorithms, however, focuses on the worst-case outcome over
all possible inputs. This approach can be far too pessimistic for many real-world settings, leaving
room for improvement in more optimistic scenarios where the algorithm designer has some prior
signal about future inputs.

Recent works by Lykouris and Vassilvitskii [LV18] and Kumar, Purohit and Svitkina [KPS18]
intertwine these two approaches to algorithms under uncertainty by augmenting algorithms with
machine learned predictions. The former studies the online caching problem, whereas the latter
focuses on the classical problems of ski-rental and non-clairvoyant job scheduling. They design
algorithms that (1) perform excellently when the prediction is accurate and (2) have worst-case
guarantees in the form of competitive ratios. For such augmented online algorithms, they introduce
the metrics of consistency, which measures the competitive ratio in the case where the machine
learning prediction is perfectly accurate, and robustness, which is the worst-case competitive ratio
over all possible inputs. Moreover, the algorithms they design have a natural consistency-robustness
trade-off, where one can improve consistency at the cost of robustness and vice versa. These two
works, however, do not discuss the extent to which such trade-offs are necessary, i.e., whether the
given trade-offs are tight.2

In this work, we provide the first set of optimal results for online algorithms using machine-learned
predictions. Our results are the following:

(i) For the ski-rental problem, we give tight lower bounds on the robustness-consistency trade-off
in both deterministic and randomized settings, matching the guarantees of the algorithms given
by [KPS18].

(ii) For the non-clairvoyant job scheduling problem, we provide a non-trivial lower bound that is
tight at the endpoints of the trade-off curve.
Moreover, for the case of two jobs, we give matching upper and lower bounds on the full
trade-off. The algorithm improves significantly upon that of [KPS18].

Conceptually, our results show that merely demanding good performance under perfect prediction can
require substantial sacrifices in overall robustness. That is, this trade-off between good performance
in the ideal setting and overall robustness is deeply intrinsic to the design of learning-augmented
online algorithms.

1.1 Our results
1For randomized algorithms, one considers the expected competitive ratio, which compares the expected

cost (taken over the randomness of the algorithm) to the cost of the offline optimal.
2We remark that Lykouris and Vassilvitski [LV18] prove for the online caching problem that one can achieve

constant competitiveness under perfect predictions while having O(log k) competitiveness in the worst case.
This bound is optimal up to constant factors by the classical algorithms for online caching [FKL+91].
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machines from a cloud service provider to handle the computing needs of the enterprise. One can
satisfy the demand in two ways: either pay 1 to rent one machine and satisfy one unit of demand for
one day, or pay b to buy a machine and use it to satisfy one unit of demand for all future days. It is
easy to cast the classical ski rental problem in this framework by setting xi = 1 for the first x days
and to 0 later. Kodialam [15] considers this generalization and gives a deterministic algorithm with a
competitive ratio of 2 as well as a randomized algorithm with competitive ratio of e

e�1 .

Figure 1: Ski rental: Robustness vs.
consistency.

Now suppose we have predictions yi for the demand on day
i. We define ⌘ =

P
i |xi � yi| to be the total L1 error of the

predictions. Both Algorithms 2 and 3 extend naturally to this
setting to yield the same robustness and consistency guarantees
as in Theorems 2.2 and 2.3. Our results follow from viewing
an instance of ski rental with varying demand problem as k
disjoint instances of the classical ski rental problem, where k
is an upper bound on the maximum demand on any day. The
proofs are similar to those in Sections 2.2 and 2.3; we omit
them for brevity.

3 Non-clairvoyant job scheduling with prediction

We consider the simplest variant of non-clairvoyant job scheduling, i.e., scheduling n jobs on a
single machine with no release dates. The processing requirement xj of a job j is unknown to the
algorithm and only becomes known once the job has finished processing. Any job can be preempted
at any time and resumed at a later time without any cost. The objective function is to minimize the
sum of completion times of the jobs. Note that no algorithm can yield any non-trivial guarantees if
preemptions are not allowed.

Let x1, . . . , xn denote the actual processing times of the n jobs, which are unknown to the non-
clairvoyant algorithm. In the clairvoyant case, when processing times are known up front, the optimal
algorithm is to simply schedule the jobs in non-decreasing order of job lengths, i.e., shortest job
first. A deterministic non-clairvoyant algorithm called round-robin (RR) yields a competitive ratio of
2 [23], which is known to be best possible.

Now, suppose that instead of being truly non-clairvoyant, the algorithm has an oracle that predicts the
processing time of each job. Let y1, . . . , yn be the predicted processing times of the n jobs. Then
⌘j = |xj � yj | is the prediction error for job j, and ⌘ =

Pn
j=1 ⌘j is the total error. We assume that

there are no zero-length jobs and that units are normalized such that the actual processing time of
the shortest job is at least one. Our goal in this section is to design algorithms that are both robust
and consistent, i.e., can use good predictions to beat the lower bound of 2, while at the same time
guaranteeing a worst-case constant competitive ratio.

3.1 A preferential round-robin algorithm

In scheduling problems with preemption, we can simplify exposition by talking about several jobs
running concurrently on the machine, with rates that sum to at most 1. For example, in the round-robin
algorithm, at any point of time, all k unfinished jobs run on the machine at equal rates of 1/k. This is
just a shorthand terminology for saying that in any infinitesimal time interval, 1/k fraction of that
interval is dedicated to running each of the jobs.

We call a non-clairvoyant scheduling algorithm monotonic if it has the following property: given two
instances with identical inputs and actual job processing times (x1, . . . , xn) and (x0

1, . . . , x
0
n) such

that xj  x0
j for all j, the objective function value found by the algorithm for the first instance is no

higher than that for the second. It is easy to see that the round-robin algorithm is monotonic.

We consider the Shortest Predicted Job First (SPJF) algorithm, which sorts the jobs in the increasing
order of their predicted processing times yj and executes them to completion in that order. Note that
SPJF is monotonic, because if processing times xj became smaller (with predictions yj staying the
same), all jobs would finish only sooner, thus decreasing the total completion time objective. SPJF
produces the optimal schedule in the case that the predictions are perfect, but for bad predictions,
its worst-case performance is not bounded by a constant. To get the best of both worlds, i.e. good
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Figure 1: Tight deterministic and
randomized trade-offs for learning-
augmented ski-rental.

Ski-rental. The ski rental problem is a classical online
algorithms problem [KMRS88] with a particularly simple
model of decision-making under uncertainty. In the prob-
lem, there is a skier who is out to ski for an unknown num-
ber of days. The first morning, the skier must either rent
skis for a cost of $1 or buy skis for a cost of $B. Each day
thereafter, the skier must make the same decision again
as long as she has not yet purchased skis. The goal for
the skier is to follow a procedure that minimizes com-
petitive ratio. Variations of the ski-rental problem have
been used to model a diverse set of scenarios, including
snoopy caching [KMRS88], dynamic TCP acknowledge-
ment [KKR03], and renting cloud servers [KKP13].

In our setting of ski-rental with a machine-learned predic-
tion, we assume that, in addition to knowing B, the skier
has access to a prediction y for the number of days she
will ski. Let η denote the absolute error of the prediction y (i.e., if she actually skis for x days, then
η = |x− y|). Furthermore, define c(η) to be the skier’s worst-case competitive ratio over all y given
η. We say that the procedure is γ-robust if c(η) ≤ γ for any η and that it is β-consistent if c(0) ≤ β.
We prove deterministic and randomized lower bounds on the robustness-consistency trade-off that
match the algorithmic results in [KPS18]. Specifically, we show:

Theorem 1.1 (Deterministic Lower Bound for Ski-Rental; also in [GP19, ADJ+20]). Let λ ∈ (0, 1)
be a fixed parameter. Any (1 + λ)-consistent deterministic algorithm for ski-rental with machine-
learned prediction problem is at least (1 + 1/λ)-robust.

We remark that this deterministic bound is simple to prove and has also appeared in two prior
works [GP19, ADJ+20].

Theorem 1.2 (Randomized Lower Bound for Ski-Rental). Any (randomized) algorithm for ski-rental
with machine-learned prediction that achieves robustness γ must have consistency

β ≥ γ log

(
1 +

1

γ − 1

)
.

In particular, any (randomized) algorithm achieving robustness γ ≤ 1/(1− e−λ) for the ski-rental
with machine-learned prediction problem must have consistency β ≥ λ/(1− e−λ).
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Figure 2: Tight trade-offs for scheduling
two jobs

Non-clairvoyant scheduling. The non-clairvoyant job
scheduling problem was first studied in an online setting
by Motwani, Phillips, and Torng [MPT94]. This problem
models scheduling jobs on a single processor, where the
jobs have unknown processing times and the objective is
to minimize the completion time (i.e., the sum of the job
completion times). More formally, the algorithm initially
receives n job requests with unknown processing times
x1, x2, · · · , xn and is asked to schedule them on a single
machine, allowing for preemptions. If the completion
time of job i is ti, then the total completion time of the
algorithm is

∑n
i=1 ti.

In the learning-augmented version of the problem,
we additionally provide the algorithm with predictions
y1, y2, · · · , yn of the processing times x1, x2, · · · , xn.
Let η =

∑
i |xi − yi| be the `1 error of the prediction

and c(η) be the algorithm’s worst-case competitive ratio given η. As before, we say an algorithm is
γ-robust if c(η) ≤ γ for any η and β-consistent if c(0) ≤ β. Our first result is a lower bound on the
robustness-consistency trade-off in the general case.
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Theorem 1.3 (Lower bound for non-clairvoyant scheduling with n jobs). Any (1 + λ)-consistent
algorithm for non-clairvoyant scheduling with machine-learned prediction must have robustness

γ ≥ n+ n(n+ 1)λ

1 + λ(n+ 1)(n+ 2)/2
.

This bound is tight at the endpoints of the trade-off. When λ = 0, we have c(η) ≥ n, which is
achieved by any (non-idling) algorithm. On the other hand, when λ = 1− 2

n+1 (so 1+λ = 2− 2
n+1 ),

we have c(η) ≥ 2− 2
n+1 , which is the tight bound of [MPT94] (achieved by round-robin).3

On the other hand, Kumar, Purohit and Svitkina [KPS18] give an algorithm that is (1 + λ)/2λ-
consistent and 2/(1− λ)-robust for λ ∈ (0, 1). In the case of n = 2, the robustness can be improved
to 4/(3 − 3λ). We provide a significantly better trade-off (Figure 2) and a matching lower bound
in this regime. Our algorithm is 2-competitive over all parameter choices, while their algorithm has
robustness tends to infinity as consistency goes to 1.

Theorem 1.4 (Tight bound for non-clairvoyant scheduling of 2 jobs). In the case of 2 jobs, there is
an algorithm that achieves (1 + λ)-consistency and (1 + 1/(1 + 6λ))-robustness for non-clairvoyant
scheduling with machine-learned prediction, for any λ ∈ (0, 1/3).4 Moreover, this bound is tight.

1.2 Related work

For learning-based ski-rental, the result of [KPS18] has since been extended by [LHL19, GP19].
Scheduling with predictions is also studied by [LLMV20, Mit20, Mit19], though under different
prediction models or problem settings. The results of [LV18] on online caching with ML predictions
have been improved and generalized by [ACE+20, Roh20, JPS20, Wei20]. Several other learning-
augmented online problems have also been considered in the literature, including matching, optimal
auctions and bin packing [DH09, KPS+19, MV17, AGKK20, ADJ+20].

Online algorithms (without ML predictions) are a classical subject in the algorithms literature. The
(classic) ski-rental problem is well-understood: It is known that there exists a 2-competitive deter-
ministic algorithm [KMRS88]. This can be further improved to e/(e− 1) using randomization and
is known to be optimal [KMMO94]. There are also numerous extensions of the problem, includ-
ing snoopy caching [KMRS88] and dynamic TCP acknowledgment [KKR03]. The non-clairvoyant
scheduling problem was first studied by [MPT94]. They show that for n jobs the round-robin heuris-
tic achieves a competitive ratio of 2 − 2/(n + 1) and provide a matching lower bound. They also
show that randomization provides at most a minor lower-order improvement to the competitive ratio.
Our work revisits these classical results by extending their lower bounds to settings where we want
to optimize for consistency (with respect to a prediction) in addition to worst-case competitive ratio.

Another related line of inquiry is the study of online problems in stochastic settings, where the
inputs come from certain distribution [HB09, FMMM09, MNS12, MGZ12, Mit20, EKM18]. We
note that this model differs from ours in that we do not make any assumptions on the distribution or
stochasticity of inputs.

Finally, using machine learning to design algorithms under uncertainty has been explored in other
settings as well, such as online learning [KLMS19, BCKP20] and data streams [HIKV19, AIV19,
JLL+20, CGP20]. A number of works also study learning-based methods for numerical linear alge-
bra, combinatorial optimization, and integer programming [BPL+16, KDZ+17, BDSV18, NOST18,
LCK18, KvHW19, SLB+19, AMW19, CGT+20, IVY19, AKL+19, DGE+19].

1.3 Preliminaries and notations

In our analyses that follow, we use ALG to denote the cost incurred by the algorithm on a given
input and prediction. We use OPT to denote the optimal cost achievable by an algorithm with full

3A competitive ratio of 2− 2/(n+ 1) can always be achieved (even without ML predictions) [MPT94], so
we do not need to consider consistency 1 + λ for λ ≥ 1− 2/(n+ 1)

4Kumar, Purohit and Svitkina [KPS18] uses large λ to indicate low consistency, whereas we use small λ for
low consistency. The results are comparable up to a reparametrization. Also, round-robin has a competitive
ratio of 4/3 for 2 jobs (without using predictions) [MPT94], so we do not need to consider consistency 1 + λ
for λ ≥ 1/3.
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knowledge of the future (i.e., an offline algorithm). Note that ALG is a function of the input and
the prediction, while OPT depends only on the input. The competitive ratio for a given input and
prediction is simply the ratio ALG/OPT.

In terms of this notation, an algorithm is β-consistent if ALG/OPT ≤ β for all situations where the
input is the same as the prediction; an algorithm is γ-robust if ALG/OPT ≤ γ for all pairs of input
and prediction.

2 Ski Rental

In the ski-rental problem, a skier is out on a ski trip, which will end after the x-th day for some
unknown x. Each day, if she has not yet bought skis, the skier may either rent skis for $1 or buy skis
for $B and ski for free from then on. In the learning-augmented version of the problem, the skier is
also provided with a machine-learned prediction y of x that she may use to aid her decision.

We first state the algorithmic results of Kumar, Purohit and Svitkina [KPS18], which we will prove to
be optimal. Their algorithms require a hyperparameter λ ∈ (0, 1) that dictates the trade-off between
robustness and consistency. Given λ, the deterministic and randomized algorithms of [KPS18] for
ski rental with machine-learned predictions proceed as follows:

Deterministic-Ski-Rental(y,B):
If y ≥ B,

Buy at the start of day dλBe.
Otherwise,

Buy at the start of day dB/λe.

Randomized-Ski-Rental(y,B):
If y ≥ B,

Let k = dλBe.
Otherwise,

Let k = dB/λe.
Select day i ∈ [k] with probability proportional to (1− 1/B)k−i.
Buy at the start of day i.

Kumar, Purohit and Svitkina [KPS18] show that the algorithms achieve the following robustness-
consistency trade-offs:
Theorem 2.1 (Theorem 2.2 of [KPS18]). Given a parameter λ ∈ (0, 1), the
Deterministic-Ski-Rental algorithm is (1 + 1/λ)-robust and (1 + λ)-consistent.
Theorem 2.2 (Theorem 2.3 of [KPS18]). Given a parameter λ ∈ (0, 1), the
Randomized-Ski-Rental algorithm is

(
1

1−e−(λ−1/B)

)
-robust and

(
λ

1−e−λ
)
-consistent.

Notice that for largeB, our randomized lower bound (Theorem 1.2) essentially matches the guarantee
of Theorem 2.2.

2.1 Deterministic Lower Bound

In this section, we prove Theorem 1.1, which also appeared in [GP19, ADJ+20]. Since the algorithm
is deterministic, we proceed by a an adversarial argument. Let x be the last day of the ski season.
The high-level idea is to fix a specific y, and then consider two instances, one where x = y and one
where x 6= y. Since the algorithm does not know x, it cannot distinguish between these two cases
and therefore must output a unique day t (for purchasing skis) given y and B. Suppose y is large, say,
greater than B. Then, intuitively, t must be fairly small to satisfy consistency. Given this constraint,
in the other instance, we let the adversary choose an x 6= y that yields the worst possible competitive
ratio. We will show that this competitive ratio indeed matches the robustness upper bound.

Proof of Theorem 1.1. Let y be the prediction and η = |y−x| be the error. Consider a deterministic
algorithm that achieves (1 + λ) consistency. Suppose y > (1 + λ)B, and let t be the day on which
the algorithm purchases skis (given y and B).

First, suppose t ≥ y. When x = y, we have OPT = B and ALG = y. Then the competitive ratio
is y/B, which must be bounded by 1 + λ by our consistency requirement, but this contradicts the
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assumption y > (1 + λ)B. Second, suppose B < t < y. Again, when x = y, OPT = B, and
ALG = t+B − 1. By the (1 + λ)-consistency, (t+B − 1)/B ≤ 1 + λ. Thus, (t− 1)/B ≤ λ < 1,
contradicting the assumption that t > B. Therefore, simply to achieve (1 + λ)-consistency, the
algorithm must output t ≤ B. Now under this condition, we consider two cases. We use the case
when y = x to derive a bound on λ, and apply this along with an adversarial argument in the case
when y 6= x to obtain our robustness lower bound.

(i) Suppose x = y. Since y > B, we have OPT = B. On the other hand, ALG = t+B − 1, as
t < x. Thus, the algorithm does 1 + (t− 1)/B times worse than optimal. Assuming that the
algorithm is (1 + λ)-consistent, we have 1 + (t− 1)/B ≤ 1 + λ, so t ≤ λB + 1.

(ii) Suppose x 6= y. We adversarially set x = t; note that x ≤ B. Thus, OPT = x = t and
ALG = t + B − 1. Our bound on t from (i) now lower bounds the competitive ratio as
(t+B − 1)/t ≥ 1 + (B − 1)/(λB + 1). For large B, this lower bound approaches 1 + 1/λ.
This shows that c(η) ≥ 1 + 1/λ and thus completes the proof.

2.2 Randomized Lower Bound

The starting point of our randomized lower bound is the well-known fact that the ski-rental problem
can be expressed as a linear program (see, e.g., [BN09]). Our key observation then is that the
consistency and robustness constraints are in fact also linear. Somewhat surprisingly, we show that
the resulting linear program can be solved analytically in certain regimes. By exploiting the structure
of the linear program, we will determine the optimal robustness for any fixed consistency, and this
matches the trade-off given by Theorem 2.2 (when y � B and for large B).

The proof of our randomized lower bound (Theorem 1.2) is fairly technical. Thus, we defer the proof
to Appendix A and only present a sketch here.

Proof sketch of Theorem 1.2. As a first step, we can characterize algorithms for ski rental as feasible
solutions to an infinite linear program, with variables {pi}i∈N indicating the probability of buying
at day i. The constraints of robustness and consistency can be written as linear constraints on this
representation. Given γ and β, understanding whether a γ-robust and β-consistent algorithm exists
therefore reduces to checking if this linear program is feasible. (In particular, we do not have an
objective for the linear program.)

First, we ask that the pi’s define a probability distribution. That is, pi ≥ 0 and
∞∑

i=1

pi = 1. (2.1)

Second, to satisfy the consistency constraint, the algorithm must have expected cost within β ·OPT
when y = x. In this case, the ski season ends at i = y, so there is no additional cost afterwards.

y∑

i=1

(B + i− 1)pi + y

∞∑

i=y+1

pi ≤ βmin{B, y}. (2.2)

Third, each value of x gives a distinct constraint for robustness, where the left side is the expected
cost and the right side is γ ·OPT. When x ≤ B, OPT = x, so we have

x∑

i=1

(B + i− 1)pi + x

∞∑

i=x+1

pi ≤ γx ∀x ≤ B. (2.3)

If x > B, then OPT = B. The robustness constraints are infinitely many, given by
x∑

i=1

(B + i− 1)pi + x

∞∑

i=x+1

pi ≤ γB ∀x > B. (2.4)

Having set up this LP, the remainder of the proof follows in two steps. First, we show that this
(infinite) LP can be reduced to a finite one with B + 1 constraints and y variables. We then proceed
to analytically understand the solution to the LP. This allows us to lower bound the parameter γ given
any β, and it indeed matches the upper bound given by [KPS18].
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3 Non-clairvoyant Scheduling

In the non-clairvoyant scheduling problem, we have to complete n jobs of unknown lengths
x1, x2, · · · , xn using a single processor. The processor only learns the length of a job upon fin-
ishing that job. The goal in this problem is to schedule the jobs with preemptions to minimize the
total completion time, i.e., the sum of the times at which each job finishes. Observe that no algorithm
can achieve a non-trivial guarantee if preemptions are disallowed. The problem has been well-studied
in the classic setting. Motwani, Phillips, and Torng [MPT94] show that the round-robin (RR) al-
gorithm achieves 2 − 2/(n + 1) competitive ratio, which is the best possible among deterministic
algorithms. The algorithm simply assigns a processing rate of 1/k to each of the k unfinished jobs at
any time. (Note that since preemption is allowed, we can ease our exposition by allowing concurrent
jobs run on the processor, with rates summing to at most 1.)

Now, suppose one has access to a machine-learned oracle that produces predictions y1, y2, · · · , yn
of the processing times x1, x2, · · · , xn. Define η =

∑
i |xi − yi| to be the total prediction error. We

would like to design algorithms that achieve a better competitive ratio than 2 − 2/(n + 1) when
η = 0 and while preserving some constant worse-case guarantee.

3.1 A General Lower Bound

Our first result is a lower bound on the robustness-consistency trade-off that is tight at the endpoints
of the trade-off curve. Note that since the classic work [MPT94] provides a c = 2 − 2/(n + 1)
competitive ratio (with no ML prediction), one can always achieve c-robustness and c-consistency
simultaneously. Hence, as we remarked, Theorem 1.3 is tight at λ = 0 and λ = 1− 2

n+1 . We now
prove the theorem.

Proof of Theorem 1.3. Consider an algorithm that achieves 1 + λ consistency. Let the predictions
be y1 = y2 = · · · = yn = 1. Let d(i, j) denote the amount of processing time on job i before job j
finishes. Assume without loss of generality that job 1 is the first job to finish and that when it finishes,
we have d(i, i) ≥ d(j, j) for all i < j. Consistency requires

(1 + λ) ·OPT =
n(n+ 1)

2
(1 + λ) ≥

∑

i,j

d(i, j) +

n∑

i=2

(n− i+ 1)(1− d(i, i)),

where the first term represents the costs incurred thus far, and the second term represents the minimum
cost required to finish from this state. Simplifying, we obtain the condition

n(n+ 1)

2
λ ≥

n∑

i=2

(i− 1) · d(i, i), (3.1)

as d(i, j) = d(i, i) for all i at this point in the execution.

Now, consider a (adversarial) setup with xi = d(i, i) + ε, where we take d(i, i) to be as measured
upon the completion of job 1 and ε > 0 to be a small positive number. For this instance, we have

OPT = 1 +

n∑

i=2

ixi +O(ε).

We also have, based on the execution of the algorithm up to the completion of job 1, that

ALG ≥ n
(

1 +

n∑

i=2

xi

)
.

To show a consistency-robustness lower bound, it suffices to lower bound ALG/OPT subject to the
consistency constraint. Equivalently, we can upper bound

OPT
ALG

− 1

n
≤ 1

n

(
1 +

∑n
i=2(i− 1)xi +O(ε)

1 +
∑n
i=2 xi

)
.
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Suppose we know a priori that the value of the numerator is C+1+O(ε) (i.e.,
∑n
i=2(i−1)xi = C).

To maximize the quantity on the right-hand side, we would want to have
∑n
i=2 xi be as small as

possible subject to the constraints that xi ≥ xj ≥ 0 if i < j and
n∑

i=2

(i− 1)xi = C.

Observe that this optimization problem is a linear program. For this linear program, suppose we have
a feasible solution with xi > xi+1. Such a solution cannot be optimal, as we can set xi ← xi − α

i−1

and xi+1 ← xi+1 + α
i for sufficiently small α > 0, reducing the objective while remaining feasible.

Thus, if an optimal solution exists, it must have x2 = x3 = · · · = xn. It is not hard to see that this
linear program is bounded and feasible, so an optimum does exist. It follows that for a given C, we
want to set x2 = x3 = · · · = xn = 2C

n(n−1) , in which case the right-hand side is equal to

C + 1 +O(ε)

1 + 2C
n

− n− 1

2
+
n− 1

2
=
−n−3

2 +O(ε)

1 + 2C
n

+
n− 1

2
.

To maximize the leftmost term, which has a negative numerator (for sufficiently small ε), we want
to maximize C. However, we know from (3.1) that C =

∑n
i=2(i− 1)xi ≤ n(n+1)

2 λ. Therefore, we
have the upper bound

OPT
ALG

− 1

n
≤ 1

n

(
n(n+1)

2 λ+ 1 +O(ε)

1 + (n+ 1)λ

)
.

Finally, taking ε→ 0 yields the desired bound
ALG
OPT

≥ n+ n(n+ 1)λ

1 + (n+1)(n+2)
2 λ

.

3.2 A Tight Complete Trade-off for Two Jobs

We now consider the special case of having n = 2 jobs. It is always possible to achieve 4/3
competitiveness by round-robin [MPT94], and with machine-learned predictions, Kumar, Purohit,
and Svitkina [KPS18] proves an (1 + λ)/2λ-consistency and 4/(3− 3λ)-robustness trade-off. We
show that this trade-off can be significantly improved and that our new bound is in fact tight.

Lower bound. We start by proving our lower bound. Here, we remark that any lower bound for
k jobs directly implies the same lower bound for any n ≥ k jobs, since one can add n− k dummy
jobs with 0 predicted and actual processing times. Thus, the lemma below also holds for n > 2.
Lemma 3.1 (Lower bound for non-clairvoyant scheduling). For the non-clairvoyant scheduling
problem of 2 jobs, any algorithm that achieves (1 +λ)-consistency must be at least 1 + (1/(1 + 6λ))-
robust for a λ ∈ (0, 1/3).

Proof. Consider a (1 + λ)-consistent algorithm A. Suppose the inputs are predictions y1 = y2 = 1.
First, we focus on an instance I , where x1 = y1, x2 = y2. Let d(i, j) denote the amount of
processing time on job i before job j finishes for this instance, and assume without loss of generality
that the algorithm finishes job 1 first. Observe in this scenario the consistency requirement asks that
A must produce a schedule with total completion time at most (1 + λ)(2y1 + y2) = 3 + 3λ. As job
1 finishes first, d(1, 2) = 1. Since x1 = x2 = 1 and ALG = x1 + x2 + d(1, 2) + d(2, 1), we must
have

d(2, 1) ≤ λ(2y1 + y2) = 3λ. (3.2)
Now we consider an adversarial instance I ′ with same predictions (y1 = y2 = 1), but different
choices of actual processing times. In particular, let x1 = 1 but x2 = d(2, 1) + ε for an infinitesimal
constant ε. Since the inputs to the algorithm are the same as in the previous instance I , it would
start off by producing the same schedule. In particular, the algorithm would finish job 1 first at time
1 + d(2, 1), then finish job 2 immediately afterwards. Therefore,

ALG = 2 + 2d(2, 1) + ε. (3.3)
On the other hand, since λ ≤ 1/3, x2 ≤ x1, we have

OPT = 2x2 + x1 = 2d(2, 1) + 2ε+ 1. (3.4)
By (3.2), we get that the competitive ratio is at least 1 + 1/(1 + 6λ) as ε→ 0.
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Upper bound. To complete the proof of Theorem 1.4. We show that the algorithm from [KPS18]
can be improved. Our new scheduling scheme proceeds in two stages. First, it follows the round-
robin algorithm until the consistency constraint is tight. Then, it processes jobs in a greedy order,
starting with the job of minimum prediction time. We name the algorithm Two-Stage-Schedule
and prove the following guarantee:
Lemma 3.2 (Algorithm for non-clairvoyant scheduling). For the non-clairvoyant scheduling prob-
lem of 2 jobs, the algorithm Two-Stage-Schedule achieves (1 + λ)-consistency and (1 + 1/(1 +
6λ))-robustness for a λ ∈ (0, 1/3).

The proof can be found in Appendix B. Finally, combining Lemma 3.2 and Lemma 3.1 proves
Theorem 1.4.

4 Conclusion

In this paper, we give lower bounds for the learning-augmented versions of the ski-rental problem
and non-clairvoyant scheduling. In doing so, we show that robustness-consistency trade-offs are
deeply intrinsic to the design of online algorithms that are robust in the worst case yet perform well
when machine-learned predictions are accurate.

A broad future direction is to use our techniques to investigate tight robustness-consistency trade-
offs for other learning-augmented online algorithms (e.g., online matching or generalizations of
ski-rental) following the spate of recent works on this topic.

Broader Impact

Our work is on the foundations of learning-augmented online algorithms. In particular, we focus
on the fundamental limitations and trade-offs inherent to the approach (as opposed to providing
new algorithms). Since our work is primarily theoretical, we believe that the immediate impact of
our work will be on the academic design of algorithms within this budding research area. More
broadly, we hope that research on this topic will lead to safer and more robust applications of ML in
decision-making settings.
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