6 Appendix

6.1 Odd Ratio Derivation

In Sec.[3.2.2] we used odd ratio to analyze the behavior of the proposed imbalance calibration method.
Here we provide the full derivation of the odd ratio Eq. [§|from Eq. [7]and Eq.
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where cy; denotes the ground truth class, c; denotes one of the other classes. Py, Py and P, denote

the final calibrated posterior, the original discriminative posterior and the rebalanced posterior
respectively.

(10)

6.2 Search Algorithm for \

Efficient algorithm exists for searching A based on empirical observation of dependency on .
Empirically, we found that performance metrics evaluated on a validation set vary with X in concave
manner with a unique maximum. In other words, a function of A first increases and then decreases.
A modified binary search algorithm can find a maximum with a specified precision with O log(n)
time complexity where n is the number of As in the search range. We outline the algorithm in a
Pythonic pseudo code format implemented with recursion. To assist efficient search, we define three
hyperparameters in this algorithm, Low,High and Prec which is the lower bound, upper bound and
quantization precision of A to be searched. Based on our observation,the parameters are set to 0.0,
2.0 and 0.1 respectively. Another notation introduced is metric() which denotes a metric function
that takes A as input and evaluates a model with the given A on a validation set. metric() returns a
scalar representing the performance of the model with the current A. The full algorithm is presented

in Alg.
6.3 Imbalance Due to Evaluation Metrics

We define two types of label prior shift: explicit and implicit. The shift occurs as a result of imbalance
in the training data and they will lead to poor performance measured on certain metrics. We will
discuss them in the general case of multi-class classification.

Explicit label prior shift refers to the prior (label) distribution changing between training and testing,
ie, Ps(Y) # P,(Y) following the definition of prior shift in [26]}; in this paper, we focus on the case
where the training distributions have varying degrees of imbalance (e.g. long-tailed) and the testing
distribution shifts (e.g. is uniformly distributed, Y ~ U(1/K)). To see that the imbalance causes
label prior shift which in turn, causes performance drop, let’s analyze the popular metric, accuracy
used in image classification.
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As shown in eq. [T T] the accuracy metric is equal to the expectation of accuracy w.r.t to the distribution
of labels, P(Y). When P,(Y) # P,(Y) = U(1/K), training with imbalanced data maximizes
accuracy w.r.t P;(Y") where large classes dominate, while on test dataset the accuracy metric calculates
the expectation of accuracy w.r.t a uniform distribution . Consequently, training with imbalanced
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Algorithm 2: Binary Search Algorithm for A
Data: {z,y} € Dya
Result: A

Initialize: L < 0.0, H < 2.0, prec < 0.1 metric() > metric() takes a A and evaluates a model on D,
if metric(0.1) < metric(0.0) then

L Return 0.0 > A = 0.0 is the optimal solution
while metric(H) > metric(0.0) do
L H+ =5x*prec > Enlarge the search range s.t. the optimal ) is absolutely contained
procedure FINDMAXLAMBDA (metric(),L, H)
if L == H then

L Return L > Reached the last A
if H == L + 1 then
if metric(L) > metric(H) then
L Return L
else
L L Return H > Reached the last two As
M« (L+ H)/2
if metric(M) > metric(M + prec) and metric(M) > metric(M — prec) then
L Return M
if metric(M) > metric(M + prec) and metric(M) < metric(M — prec) then

L Return FindMaxLambda(metric(),L,M — prec) > Optimal A lies on the left side
else
L Return FindMaxLambda(metric(),M + prec,H) > Optimal A lies on the right side

Complexity: O(log N) where N = (H — L) /prec

data often biases towards large classes to maximize eq.|l 1|and often results in poor performance on
uniform evaluation data.

Implicit label prior shift is unconventional because it happens when P,(Y) = P.(Y) # U(1/K)
. This is the case for semantic segmentation, where classes such as pedestrians, poles, etc. occupy
a much smaller portion of an image in both training and test data. However, people tend to assign
equal importance to all classes regardless of their actual pixel percentage. This is reflected by the
popularity of class average metrics such as mean accuracy and mean Intersection over Union (mIOU).
In other words, label prior shift is implicitly caused by using class average metrics even though the
test distribution is equal to training. Let’s look at the another popular metric, mean accuracy, which is
often used when the test data is not uniform (in contrast to the first case).
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As shown in eq. [I2] mean accuracy is equal to the expectation of accuracy w.r.t a uniform label
distribution. Mean accuracy is exactly the same as the accuracy metric on uniform test data in the
first case. In other words, evaluating on non-uniform test data with mean accuracy is equivalent to
evaluating on uniform test data with accuracy in expectation. Even though the training distribution is
the same as the test distribution and both are non-uniform, using mean accuracy results in an implicit
label prior shift.

6.4 Hyperparameter for Cifar Experiments
Table[6 documents the hyperparameters used for the Cifar experiments in table[2 in the main paper.

The search for A is very efficient because it dose not require training. The modified binary search
algorithm in Appendix Sec. can be used to find a \ in O(log V) time.

15



Table 6: Top1 validation error, for Imbalance Calibration. CE is a baseline trained with unmodi-
fied cross-entropy loss. CB refers to class balanced loss in [1]. The subscript denotes the A values for
the experiments

CE-DRW-IC (Ours) 18.911.5 11.441.2 21.451.2 11.42140
Focal-DRW-IC (Ours) | 21.6310 11.80p5 | 21.6319 11.4805

56.800¢ 41.4405 | 544005 40.07¢5 | 32.00
59.4305  43.3500 | 56.8906 41.9300 | 33.52

Dataset | Imbalanced CIFAR-10 | Imbalanced CIFAR-100 |
Imbalance Type | long-tailed | step | long-tailed | step | AVE |
Imbalance Ratio | 100 10 | 100 10 | 100 10 | 100 0 |

CE-IC (Ours) 20.142 1 11.379.7 25.611 1 11.341 0 59.081 3 419119 53.481 2 40.6413 | 32.95
Focal-IC (Ours) 19.84; 3 11.99; 1 25.680s 10.9970 | 58.3511 42.0119 | 52.7312 40.701 0 | 32.79
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Figure 3: Hyperparameter )\ search on iNaturalist2018 (Left) and Synthia (Right) validation
set for imbalance calibration. A = 0.0 corresponds to the baseline performance. Note that in the
main paper, we report 3-fold cross validated resutls for iNaturalist2018. Here we show the search on
the entire validation set. A = 0.4 is used as the parameter for subsequent experiments on Synthia
fusion experiments in sec. 4.4.2|

6.5 Lambda Search on Validation Set for iNatrualist2018 and Synthia

The left side of Fig.[3 shows the performance curve of topl and top5 accuracy on iNatrualist2018
with different \. The right side of Fig. [3|shows the performance curve of both mean IOU and mean
accuracy on a Synthia validation set with varying A values. On the far right where A = 1.0 we obtain
the performance of the rebalanced posterior as in eq. [5|and on the left we recover the performance of
the discriminative model. Intuitively, as we move towards the full rebalanced posterior by increasing
A, the algorithm gives more weight to minority classes and the mean accuracy continues to increase.
However this comes at the cost of significant increase in false positives as the mean IOU drops.
The trade-off between mean IOU and mean accuracy reflects the imperfect learning of the dataset
discussed in sec.[3.2. By searching for a good balance, it is possible to improve mean accuracy while
maintaining a good mean IOU. The performance curves in both experiments exhibit concavity as
in the simpler 2D toy example [d.1] This further validates our proposed binary search algorithm in
Appendix Sec. which relies on the assumption of concavity.

6.6 Qualitative Results for Synthia RGBD fusion Experiments

Fig.[d] shows qualitative results for the Synthia fusion experiments in Sec. Our method UNO-
IC is able to capture small details such as pedestrians in the distance even under severe visual
degradations. Because the rain condition is not encountered during training, the rgb channel failed to
cope with the degradation. UNO [19] dynamically shifts the fusion algorithms weight to the depth
channel while our imbalance calibration method gives more weights to small objects. The qualitative
and quatitative results in Sec d.4.2]demonstrate the effectiveness of our unifed perspective [3.1]and

Alg.
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Figure 4: Qualitative results for Synthia Rain. The rain condition is not seen during training. Our
algorithm UNO-IC can capture fine details in segmentation even under severe viusal degradation
not encounted during training. Our method combined with UNO demonstrates is effective against
extreme dataset imbalance and unseen degradations in semantic segmentation.
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