Novelty Search in Representational Space for Sample
Efficient Exploration

Ruo Yu Tao" %", Vincent Francois-Lavet! 2, Joelle Pineau® 2

! McGill University
2 Mila, Quebec Artificial Intelligence Institute
" ruo.tao@mail.mcgill.ca

Abstract

We present a new approach for efficient exploration which leverages a low-
dimensional encoding of the environment learned with a combination of model-
based and model-free objectives. Our approach uses intrinsic rewards that are
based on the distance of nearest neighbors in the low dimensional representa-
tional space to gauge novelty. We then leverage these intrinsic rewards for sample-
efficient exploration with planning routines in representational space for hard ex-
ploration tasks with sparse rewards. One key element of our approach is the use of
information theoretic principles to shape our representations in a way so that our
novelty reward goes beyond pixel similarity. We test our approach on a number of
maze tasks, as well as a control problem and show that our exploration approach
is more sample-efficient compared to strong baselines.

1 Introduction

In order to solve a task efficiently in Reinforcement Learning (RL), one of the main challenges
is to gather informative experiences via an efficient exploration of the state space. A common
approach to exploration is to leverage intrinsic rewards correlated with some metric or score for
novelty (Schmidhuber, |2010; [Stadie et al., 2015} [Houthooft et al., 2016). With intrinsic rewards,
an agent can be incentivized to efficiently explore its state space. A direct approach to calculating
these novelty scores is to derive a reward based on the observations, such as a count-based reward
(Bellemare et al., 2016; |Ostrovski et al., 2017) or a prediction-error based reward (Burda et al.,
2018b). However, an issue occurs when measuring novelty directly from the raw observations, as
some information in pixel space (such as randomness or backgrounds) may be irrelevant. In this
case, if an agent wants to efficiently explore its state space it should only focus on meaningful and
novel information.

In this work, we propose a method of sample-efficient exploration by leveraging intrinsic rewards in
a meaningful latent state space. To build a meaningful state abstraction, we view Model-based RL
(MBRL) from an information theoretic perspective - we optimize our dynamics learning through
the Information Bottleneck (Tishby et al., 2000) principle. We also combine both model-based
and model-free components through a joint representation. This method encodes high-dimensional
observations into lower-dimensional representations such that states that are close in dynamics are
brought close together in representation space (Frangois-Lavet et al., 2018). We also add additional
constraints to ensure that a measure of distance between abstract states is meaningful. We leverage
these properties of our representation to formulate a novelty score based on Euclidean distance in
low-dimensional representation space and we then use this score to generate intrinsic rewards that
we can exploit for efficient exploration.

One important element of our exploration algorithm is that we take a Model Predictive Control
(MPC) approach (Garcia et al., [1989) and perform actions only after our model is sufficiently ac-
curate (and hence ensure an accurate novelty heuristic). Through this training scheme, our agent is
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also able to learn a meaningful representation of its state space in a sample-efficient manner. The
code with all experiments is available [ﬂ

2 Problem setting

An agent interacts with its environment over discrete timesteps, modeled as a Markov Decision
Process (MDP), defined by the 6-tuple (S, Sp, A, 7, R,G) (Puterman, [1994). In this setting, S is
the state space, Sy is the initial state distribution, A is the discrete action space, 7 : S X A — S'is
the transition function that is assumed deterministic (with the possibility of extension to stochastic
environments with generative methods), R : S x A — R is the reward function (R = [—1,1]),
G:S8x A — [0,1) is the per timestep discount factor. At timestep ¢ in state s; € S, the agent
chooses an action a; € A based on policy 7 : § x A — [0, 1], such that a; ~ m(ss,-). After
taking a, the agent is in state s;11 = 7(s¢, a;) and receives reward r; ~ R(s¢,a;) and a discount
factor v¢ ~ G(st, at). Over n environment steps, we define the buffer of previously visited states
as B = (s1,...,8n), where s; € S Vi € N. In RL, the usual objective is to maximize the sum of

expected future rewards V. (s) = E, [rt + > (H;;g 7t+j) Tiiils = st} .

To learn a policy 7 that maximizes the expected return, an RL agent has to efficiently explore its
environment (reach novel states in as few steps as possible). In this paper, we consider tasks with
sparse rewards or even no rewards, and are interested in exploration strategies that require as few
steps as possible to explore the state space.

3 Abstract state representations

We focus on learning a lower-dimensional representation of state when our state (or observations
in the partially observable case (Kaelbling et al.l |1998)) is high-dimensional (Dayan) |1993; [Tamar
et al., 2016; |Silver et al.| [2016; /Oh et al., 2017 [de Bruin et al., 2018; |Ha and Schmidhuber, 2018}
Francois-Lavet et al.,[2018; Hafner et al., 2018};|Gelada et al.,[2019).

3.1 Information Bottleneck

We first motivate our methods for model learning. To do so, we consider the Information Bottleneck
(IB) (Tishby et al., 2000) principle. Let Z denote the original source message space and Z denote
its compressed representation. As opposed to traditional lossless compression where we seek to
find corresponding encodings Z that compresses all aspects of Z, in IB we seek to preserve only
relevant information in Z with regards to another relevance variable, Y. For example when looking
to compress speech waveforms (Z) if our task at hand is speech recognition, then our relevance
variable Y would be a transcript of the speech. Our representation Z would only need to maximize
relevant information about the transcript Y instead of its full form including tone, pitch, background
noise etc. We can formulate this objective by minimizing the following functional with respect to
p(Z | 2): _ ~
L(p(2]2)) =1[Z; 2] - BI[Z;Y]

where I[-;-] is the Mutual Information (MI) between two random variables. [ is the Lagrange
multiplier for the amount of information our encoding Z is allowed to quantify about Y. This
corresponds to a trade-off between minimizing the encoding rate /[ Z; Z | and maximizing the mutual
information between the encoding and our random variable Y.

We now apply this principle to representation learning of state in MBRL. If our source message
space is our state S’ and our encoded message is X', then to distill the most relevant information
with regards to the dynamics of our environment one choice of relevance variable is { X, A}, i.e.
our encoded state in the previous timestep together with the presence of an action. This gives us the
functional

Lp(a’ | 8) = I[S" X'] = BIIX"; {X, A}]. M
In our work, we look to find methods to minimize this functional for an encoding that maximizes
the predictive ability of our dynamics model.

We first aim to minimize our encoding rate I[S’; X’]. Since encoding rate is a measure of the amount
of bits transmitted per message S’, representation dimension is analogous to number of bits per mes-
sage. This principle of minimizing encoding rate guides our selection of representation dimension
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- for every environment, we try to choose the smallest representation dimension possible such that
the representation can still encapsulate model dynamics as we understand them. For example, in a
simple Gridworld example, we look to only encode agent position in the grid-world.

Now let us consider the second term in Equation [} Our goal is to learn an optimally predictive
model of our environment. To do so we first consider the MI between the random variable denoting
our state representation X, in the presence of the random variable representing actions A and the
random variable denoting the state representation in the next timestep X’ (Still,2009). Note that MI
is a metric and is symmetric:

/
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This quantity is a measure of our dynamics model’s predictive ability. If we consider the two entropy
terms (denoted H|[-]), we see that H[X'] constitutes the entropy of our state representation and
H[X' | X, A] as the entropy of the next state X’ given our current state X and an action A. Recall
that we are trying to minimize I[X’; S’] and maximize I[X’; { X, A}] with respect to some encoding
function X = ¢(.5). In the next section, we describe our approach for this encoding function as well
as dynamics learning in MBRL.

3.2 Encoding and dynamics learning

For our purposes, we use a neural encoder ¢ : § — X parameterized by 6; to map our high-
dimensional state space into lower-dimensional abstract representations, where X C R"¥. The
dynamics are learned via the following functions: a transition function 7 : X x A — X parameter-
ized by 0+, a reward function 7 : X x A — [—1, 1] parameterized by 6;, and a per timestep discount
factor function 4 : X x A — [0,1) parameterized by 6. This discount factor is only learned to
predict terminal states, where v = 0.

In order to leverage all past experiences, we use an off-policy learning algorithm that samples tran-
sition tuples (s, a, 7,7, s") from a replay buffer. We first encode our current and next states with our
encoder to get x + é(s;0;), o' + é(s’;6;). The Q-function is learned using the DDQN algorithm
(van Hasselt et al., 2015)), which uses the target:

Y =1 +9Q(é(s';0.- ), argmax Q(z’, a’; 0q); 0g- ),
a’€A

where 0- and ;- are parameters of an earlier buffered Q-function (or our target Q-function) and
encoder respectively. The agent then minimizes the following loss:

Lqg(bg) = (Q(z,a;6q) —Y)?.
We learn the dynamics of our environment through the following losses:

Lp(0e,0:) = |r — #(z,a;0:) ", Lg(0e,05) = |y — 4(x, a;05) [

and our transition loss

Lr(0,07) = ||z + 7(x, a;02)] — 2/[3. (3)
Note that our transition function learns the difference (given an action) between previous state x and
current state z’. By jointly learning the weights of the encoder and the different components, the
abstract representation is shaped in a meaningful way according to the dynamics of the environment.
In particular, by minimizing the loss given in Equation [3| with respect to the encoder parameters 6
(or p(z | s)), we minimize our entropy H[X'| X, A].

In order to maximize the entropy of our learnt abstracted state representations H[X'], we minimize
the expected pairwise Gaussian potential (Borodachov et al,[2019) between states:

La1(0e) = Eq, s,p(s) [€2p(—Car]|é(s1;0e) — é(s2;0¢)|[3)] )

with Cy; as a hyperparameter. Losses in Equation |3| and Equation (4] are reminiscent of the model-
based losses in [Francois-Lavet et al.| (2018)) and correspond respectively to the alignment and uni-
formity contrastive loss formulation in Wang and Isolal (2020), where alignment ensures that similar
states are close together (in encoded representation space) and uniformity ensures that all states are
spread uniformly throughout this low-dimensional representation space.

The losses L,(0:) and L4;(0:) maximizes the I[{X, A}; X'] term and selecting smaller dimen-
sion for our representation minimizes I[X’, S’]. Put together, our method is trying to minimize
L(p('|s")) as per Equation 1}



3.3 Distance measures in representational space

For practical purposes, since we are looking to use a distance metric within X to leverage as a score
for novelty, we ensure well-defined distances between states by constraining the ¢ distance between
two consecutive states:

Lese(8:) = max(||é(s1;0e) — é(s2;0e)||2 — w, 0) (5)

where L. is a soft constraint between consecutive states s; and so that tends to enforce two con-
secutive encoded representations to be at a distance w apart. We add L., to ensure a well-defined
/5 distance between abstract states for use in our intrinsic reward calculation (a discussion of this
loss is provided in Appendix[B). We discuss how we use w to evaluate model accuracy for our MPC
updates in Appendix |Al Finally, we minimize the sum of all the aforementioned losses through
gradient descent:

L =Lg(0¢,0;)+ Lg(0e,05) + L:(0c,0:) + Lo(0g) + Lai () + Lesc(6e). 6)

Through these losses, the agent learns a low-dimensional representation of the environment that is
meaningful in terms of the ¢ norm in representation space. We then employ a planning technique
that combines the knowledge of the model and the value function which we use to maximize intrinsic
rewards, as detailed in the next section and Section [4.3]

4 Novelty Search in abstract representational space

Our approach for exploration uses intrinsic motivation (Schmidhuber;, |1990; [Chentanez et al., 2005
Achiam and Sastry, [2017) where an agent rewards itself based on the fact that it gathers interesting
experiences. In a large state space setting, states are rarely visited and the count for any state after
n steps is almost always 0. While Bellemare et al.| (2016)) solves this issue with density estimation
using pseudo-counts directly from the high-dimensional observations, we aim to estimate some
function of novelty in our learnt lower-dimensional representation space.

4.1 Sparsity in representation space as a measure for novelty

Through the minimization of Equation [I] states that are close together in dynamics are pushed
close together in our abstract state space X. Ideally, we want an agent that efficiently explores the
dynamics of its environment. To do so, we reward our agent for exploring areas in lower-dimensional
representation space that are less visited and ideally as far apart from the dynamics that we currently
know.

Given a point x in representation space, we define a reward function that considers the sparsity of
states around x - we do so with the average distance between x and its k-nearest-neighbors in its
visitation history buffer B:

1 k
%Z x, ), @)

where 2 = é(s;0e) is a given encoded state, k € ZT, d(-,-) is some distance metric in R~ and
x; = é(s4;0¢), where s; € Bfori = 1...k are the k nearest neighbors (by encoding states in 3 to
representational space) of = according to the distance metric d(-,-). Implicit in this measure is the
reliance on the agent’s visitation history buffer B.

An important factor in this score is which distance metric to use. With the losses used in Section [3]
we use /5 distance because of the structure imposed on the abstract state space with Equations 4] and

As we show in Appendix [D] this novelty reward is reminiscent of recoding probabilities (Bellemare
et al.} 2016; |Cover and Thomas| [2012) and is in fact inversely proportional to these probabilities,
suggesting that our novelty heuristic estimates visitation count. This is also the same score used to
gauge “sparseness” in behavior space in|Lehman and Stanley|(2011).

With this reward function, we present the pseudo-code for our exploration algorithm in Algo-
rithm [l



Algorithm 1: The Novelty Search algorithm in abstract representational space.

1 Initialization: transition buffer B, agent policy 7;

w

LIRS I N

11
12
13
14
15
16

Sample 7n;y;; initial random transitions, let £ = 1;,,:¢;
while ¢ < n,,,, do
// We update our dynamics model and Q-function every nj,., steps
ift mod ngf..q == 0 then
while j < 105 or Ly < (£)% do
Sample batch of transitions (s, a, Teqtr, Tintr, 7, S') € B;
Train dynamics model with (s, a, 7eytr, v, 8');
Train Q-function with (s, a, Teqtr + Tintr, v, 8');
end
v(57 A, Textry Tintr, 7 5/) S 67 set Tintr < ﬁX(é(S/; eé));
end
a; ~ w(s¢);
Take action in environment: s¢41 < 7(S¢, at), Tt,extr < R(St, at), v < G(St, ar);
Calculate intrinsic reward: 7 jner <— Px(é(St4150s))
B <= BU{(8¢, Gty Tt,cxtr Tt intrs Ve, St41) 15

end

4.2 Asymptotic behavior

This reward function also exhibits favorable asymptotic behavior, as it decreases to 0 as most of the
state space is visited. We show this in Theorem I}

Theorem 1. Assume we have a finite state space S C RY, history of states B = (s1,...,5N),
encoded state space X C R™*, deterministic mapping f : R* — R™* and a novelty reward defined
as px(x). With an optimal policy with respect to the rewards of the novelty heuristic, our agent
will tend towards states with higher intrinsic rewards. If we assume a communicating MDP setting
(Putermanl |1994), we have that

lim px(f(s)) =0, VseS.

N—o0

Proof. We prove this theorem in Appendix [E] O

4.3 Combining model-free and model-based components for exploration policies

Similarly to previous works (e.g. Oh et al.| 2017 |Chebotar et al., 2017)), we use a combination of
model-based planning with model-free Q-learning to obtain a good policy. We calculate rollout
estimates of next states based on our transition model 7 and sum up the corresponding rewards,
which we denote as  : X x A — [0, Rynq4x] and can be a combination of both intrinsic and
extrinsic rewards. We calculate expected returns based on the discounted rewards of our d-depth
rollouts:

r(z,a) +(z,a;05)%

Q(x,a) = { max Q7 (r(x,a;02),a), ifd >0 ®
Q(x,a;0q), ifd=0

Note that we simulate only b-best options at each expansion step based on Q(x, a; 6 ), where b <
|A|. In this work, we only use full expansions. The estimated optimal action is given by

a* = argmax Q%(x, a).
acA

The actual action chosen at each step follows an e-greedy strategy (¢ € [0, 1]), where the agent
follows the estimated optimal action with probability 1 — € and a random action with probability
€.
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Figure 1: (a), (b): Plotting the full history of learned abstract representations of both open and 4-
room labyrinth environments from Figures [7a] and [7b| after 500 environment steps. Colors denote
which side of the maze the agent was in, grid coordinates and transitions are shown. (c): Two views
of the same full history of learned abstract 3-dimensional representation of our multi-step maze after
300 steps. Orange and blue points denote states without and with keys respectively. Our agent is able
to disentangle states where the agent has a key and when it doesn’t as seen in the distance between
the two groups of states. Meaningful information about the agent position is also maintained in the
relative positions of states in abstract state space.

S Experiments

We conduct experiments on environments of varying difficulty. All experiments use a training
scheme where we first train parameters to converge on an accurate representation of the already
experienced transitions before taking an environment step. We optimize the losses (over multiple
training iterations) given in Section[3] We discuss all environment-specific hyperparameters in Ap-

pendix [J]

5.1 Labyrinth exploration

We consider two 21 x 21 versions of the grid-world environment (Figure [/|in Appendix). The first
is an open labyrinth grid-world, with no walls except for bordering walls. The second is a similar
sized grid-world split into four connected rooms. In these environments the action space A is the set
of four cardinal directions. These environments have no rewards or terminal states and the goal is
to explore, agnostic of any task. We use two metrics to gauge exploration for this environment: the
first is the ratio of states visited only once, the second is the proportion of total states visited.

5.1.1 Open labyrinth

In the open labyrinth experiments (Figure [2a)), we compare a number of variations of our approach
with a random baseline and a count-based baseline (Bellemare et al.,[2016) (as we can count states
in this tabular setting). Variations of the policy include an argmax over state values (d = 0) and
planning depths of d € {1,5}. All variations of our method outperform the two baselines in this
task, with a slight increase in performance as planning depth d increases. In the open labyrinth,
our agent is able to reach 100% of possible states (a total of 19 x 19 = 361 unique states) in
approximately 800 steps, and 80% of possible states (= 290 states) in approximately 500 steps.
These counts also include the n;,,;; number of random steps taken preceding training.

Our agent is also able to learn highly interpretable abstract representations in very few environment
steps (as shown in Figure [Ta) as it explores its state space. In addition, after visiting most unseen
states in its environment, our agent tends to uniformly explore its state space due to the nature of our
novelty heuristic. A visualisation of this effect is available in Appendix [H]

5.1.2 4-room labyrinth

We now consider the 4-room labyrinth environment, a more challenging version of the open
labyrinth environment (Figure[Ta). As before, our encoder ¢ is able to take a high-dimensional input
and compress it to a low-dimensional representation. In the case of both labyrinth environments, the
representation incorporates knowledge related to the position of the agent in 2-dimensions that we
call primary features. In the 4-room labyrinth environment, it also has to learn other information
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Figure 2: Labyrinth results for both open labyrinth and 4-room labyrinth over 10 trials, showing
mean and standard deviations.

such as agent surroundings (walls, open space) etc., but it does so only via the transition function
learned through experience. We call this extraneous but necessary information secondary features.
As most of these secondary features are encoded only in the dynamics model 7, our agent has to
experience a transition in order to accurately represent both primary and secondary features.

In this environment specifically, our dynamics model might over-generalize for walls between rooms
and can sometimes fail at first to try out transitions in the passageways between rooms. However,
because our agent tends to visit uniformly all the states that are reachable within the known rooms,
the e-greedy policy of our approach still ensures that the agent explores passageways efficiently even
in the cases where it has over-generalized to the surrounding walls.

We run the same experiments on the 4-room labyrinth domain as we do on the open labyrinth and
report results in Figure[2b] In both cases, our method outperforms the two baselines in this domain
(random and count-based).

5.2 Control and sub-goal exploration

In order to test the efficacy of our method beyond fixed mazes, we conduct experiments on the
control-based environment Acrobot (Brockman et al.l 2016) and a multi-step maze environment.
Our method (with planning depth d = 5) is compared to strong exploration baselines with different
archetypes:

1. Prediction error incentivized exploration (Stadie et al., [2015))
2. Hash count-based exploration (Tang et al., 2016)

3. Random Network Distillation (Osband et al.,|[2017)

4. Bootstrap DQN (BDQN, |Osband et al.|(2016))

In order to maintain consistency in our results, we use the same deep learning architectures through-
out. Since we experiment in the deterministic setting, we exclude baselines that require some form
of stochasticity or density estimation as baselines (for example, [Shyam et al.| (2018) and |Osband
et al.| (2017)). A specificity of our approach is that we run multiple training iterations in between
each environment step for all experiments, which allows the agent to use orders of magnitude less
samples as compared to most model-free RL algorithms (all within the same episode).

5.2.1 Acrobot

We now test our approach on Acrobot (Brockman et al.,[2016), which has a continuous state space
unlike the labyrinth environment. We specifically choose this control task because the nature of this
environment makes exploration inherently difficult. The agent only has control of the actuator for
the inner joint and has to transfer enough energy into the second joint in order to swing it to its goal
state. We modify this environment so that each episode is at most 3000 environment steps. While
this environment does admit an extrinsic reward, we ignore these rewards entirely. To measure the
performance of our exploration approach, we measure the average number of steps per episode that
the agent takes to move its second joint above a given line as per Figure

To demonstrate the ability of our method to learn a low dimensional abstract representation from
pixel inputs, we use 4 consecutive pixel frames as input instead of the 6-dimensional full state



\ | Acrobot \ Multi-step Maze | Norm. & Combined |

| Reward | Avg | StdErr | p-value | Avg | StdErr | p-value | Avg | StdErr | p-value

Random | 1713.3 | 316.25 | 0.0077 | 1863.3 | 308.35 | 0.0025 | 3.26 | 0.41 3.1e75
Pred | 932.8 | 141.54 | 0.050 | 1018.0 | 79.31 | 4.0e=* | 1.78 | 0.15 1.3e~%
Count | 1007.0 | 174.81 | 0.050 658.8 | 71.73 0.23 1.50 | 0.18 0.019
RND | 953.8 | 85.98 | 0.0042 | 938.4 | 135.88 | 0.024 | 1.72 | 0.15 | 3.5¢~*
BDQN | 592.5 | 43.65 0.85 1669.1 | 291.26 | 0.0046 | 2.11 | 0.37 | 0.0099
Novelty | 576.0 | 66.13 - 524.6 | 73.24 - 1.00 | 0.090 -

Table 1: Number of environment steps necessary to reach the goal state in the Acrobot and the multi-
step maze environments (lower is better). Results are averaged over 5 trials for both experiments.
Best results are in bold. We provide p-values indicative of the null hypothesis Hy : Ay = 3 —
pe = 0, calculated using Welch’s t-test, all as per (Colas et al. 2019). In this case, we do a
pair-wise comparison between the central tendencies of our algorithm (Novelty) and our baselines.
Normalized and combined results are also shown - results here are first normalized with respect to
the average number of steps taken for our algorithm and then combined on both environments.

vector. We use a 4-dimensional abstract representation of our state and results from experiments are
shown in Table[T] Our method reaches the goal state more efficiently than the baselines.

-

(b) Left: Start of our multi-step maze. right: After the
agent has collected the key.

(a) Left: Acrobot start state. right: Acrobot end state

Figure 3: Illustrations of the Acrobot and multi-step goal maze environments. a) Left: The Acrobot
environment in one configuration of its start state. a) Right: One configuration of the ending state of
the Acrobot environment. The environment finishes when the second arm passes the solid black line.
b) Left: The passageway to the west portion of the environment is blocked before the key (black) is
collected. b) Right: The passageway is traversable after collecting the key, and the reward (red) is
then available. The environment terminates after collecting the reward.

5.2.2 Multi-step goal maze

We also test our method on a more complex maze with the sub-task of picking up a key that opens the
door to an area with a reward. We build our environment with the Pycolab game engine (Stepleton,
2017). The environment can be seen in Figure[3b} where the input to our agent is a top-down view of
the environment. While this environment does admit an extrinsic reward (1 for picking up the key,
10 for reaching the final state), we ignore these rewards and only focus on intrinsic rewards.

In our experiments, we show that our agent is able to learn an interpretable representation of the
environment in a sample-efficient manner. Figure|lc|shows an example of learnt representations in
this domain after reaching the goal - we observe that positions in the maze correspond to a nearly
identical structure in the lower-dimensional representation. Our representation also nicely captures
internal state information (whether the key has been picked up) by separating the two sets of states
(states when the key has been picked up and states when the key has not been picked up). Similar
positions in both sets of states are also mapped closely together in lower-dimensional space (ie. (1,
1, with key) is close in ¢ to (1, 1, without key)), suggesting good generalization between similar
states.



6 Related work

The proposed exploration strategy falls under the category of directed exploration (Thrun, [1992)
that makes use of the past interactions with the environment to guide the discovery of new states.
This work is inspired by the Novelty Search algorithm (Lehman and Stanley, [2011) that uses a
nearest-neighbor scoring approach to gauge novelty in policy space. Our approach leverages this
scoring to traverse dynamics space, which we motivate theoretically. Exploration strategies have
been investigated with both model-free and model-based approaches. In|Bellemare et al.| (2016) and
Ostrovski et al.| (2017, a model-free algorithm provides the notion of novelty through a pseudo-
count from an arbitrary density model that provides an estimate of how many times an action has
been taken in similar states. Recently, Taiga et al.[(2020) do a thorough comparison between bonus-
based exploration methods in model-free RL and show that architectural changes may be more
important to agent performance (based on extrinsic rewards) as opposed to differing exploration
strategies.

Several exploration strategies have also used a model of the environment along with planning. Hes-
ter and Stone| (2012)) employ a two-part strategy to calculate intrinsic rewards, combining model
uncertainty (from a random-forest based model) and a novelty reward based on L, distance in fea-
ture space. A strategy investigated in [Salge et al|(2014)); [Mohamed and Rezende| (2015); Gregor
et al. (2016));|Chiappa et al.| (2017) is to have the agent choose a sequence of actions by planning that
leads to a representation of state as different as possible to the current state. In [Pathak et al.|(2017);
Haber et al.| (2018)), the agent optimizes both a model of its environment and a separate model that
predicts the error/uncertainty of its own model. Burda et al.| (2018a) similarly uses an intrinsic re-
ward based on the uncertainty of its dynamics model. In|Shyam et al.|(2018)), forward models of the
environment are used to measure novelty derived from disagreement between future states. [Still and
Precupl| (2012) take an information theoretic approach to exploration, that chooses a policy which
maximizes the predictive power of the agent’s own behavior and environment rewards. In |Badia
et al.|(2020), an intrinsic reward from the k-NN over the agent’s experience is also employed for ex-
ploration. They instead employ a self-supervised inverse dynamics model to learn the embeddings
as opposed to our approach. Beyond improved efficiency in exploration, the interpretability of our
approach could also lead to human-in-the-loop techniques (Mandel et al., [2017; |Abel et al., 2017)
for exploration, with the possibility for the agent to better utilize feedback from interpretability of
the agent in representation space.

7 Discussion

In this paper, we formulate the task of dynamics learning in MBRL through the Information Bottle-
neck principle. We present methods to optimize the IB equation through low-dimensional abstract
representations of state. We further develop a novelty score based on these learnt representations that
we leverage as an intrinsic reward that enables efficient exploration. By using this novelty score with
a combination of model-based and model-free approaches for planning, we show more efficient ex-
ploration across multiple environments with our learnt representations and novelty rewards.

As with most methods, our approach also has limitations. One limitation we may have is the scala-
bility of non-parametric methods such as k-NN density estimation since our method scales linearly
with the number of environment steps. A possible solution to this problem would be to use some
sampling scheme to sample a fixed number of observations for calculation of our novelty heuristic.
Another issue that has arisen from using very low-dimensional space to represent state is generaliza-
tion. In some cases, the model can over-generalize with the consequence that the low-dimensional
representation loses information that is crucial for the exploration of the entire state space. An inter-
esting direction for future work would be to find ways of incorporating secondary features such as
those mentioned in Section[5.1.2] An interesting possibility would be to use a similar IB method, but
using a full history of states as the conditioning variable. Beyond these points, we discuss limitations
and potential improvements to this work in Appendix [K]

Finally, we show preliminary results of our method on a more complex task - Montezuma’s Revenge
- in Appendix [G] With the theory and methods developed in this paper, we hope to see future work
done on larger tasks with more complex environment dynamics.



Broader Impact

Algorithms for exploring an environment are a central piece of learning efficient policies for un-
known sequential decision-making tasks. In this section, we discuss the wider impacts of our re-
search both in the Machine Learning (ML) field and beyond.

We first consider the benefits and risks of our method on ML applications. Efficient exploration
in unknown environments has the possibility to improve methods for tasks that require accurate
knowledge of its environment. By exploring states that are more novel, agents have a more robust
dataset. For control tasks, our method improves the sample efficiency of its learning by finding more
novel states in terms of dynamics for use in training. Our learnt low-dimensional representation also
helps the interpretability of our decision making agents (as seen in Figure [I). More interpretable
agents have potential benefits for many areas of ML, including allowing human understandability
and intervention in human-in-the-loop approaches.

With such applications in mind, we consider societal impacts of our method, along with potential
future work that could be done to improve these societal impacts. One specific instance of how
efficient exploration and environment modeling might help is in disaster relief settings. With the
incipience of robotic systems for disaster area exploration, autonomous agents need to efficiently
explore their unknown surroundings. Further research into scaling these MBRL approaches could
allow for these robotic agents to find points of interest (survivors, etc.) efficiently.

One potential risk of our application is safe exploration. Our method finds and learns from states
that are novel in terms of its dynamics. Without safety mechanisms, our agent could view potentially
harmful scenarios as novel due to the rarity of such a situation. For example, a car crash might be
seen as a highly novel state. To mitigate this safety concern we look to literature on Safety in RL
(Garcia and Fernandez, 2015). In particular, developing a risk metric based on the interpretability
of our approach may be an area of research worth developing.
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