
We would like to thank the reviewers for their valuable comments. We first address the common criticisms, then turn to1

each specific comments in what follows.2

Missing relevant work from the scheduling literature: A common criticism from multiple reviewers is the lack of3

mentioning about the relationship of MAXREWARD with scheduling problems in the paper. Indeed, there is a strong4

connection between MAXREWARD and the interval scheduling problems. We have removed the description of this5

connection from the submitted version mainly due to lack of space ( also, we decided to prefer the other related work6

and thus kept them instead in the paper to comply with the previous blocking bandit papers). We sincerely apologise for7

this mistake and will add it back to our paper in the next version. This connection is described below in more detail:8

The MAXREWARD problem belongs to the class of fixed interval scheduling problems with arbitrary weight values,9

no preemption, and machine dependent processing time (see e.g., Kolen et al. 2007 for a comprehensive survey). This10

is one of the most general, and thus, hardest versions of the fixed interval scheduling literature (see, e.g., Kovalyov,11

Ng & Cheng 2007 for more details). In particular, MAXREWARD is a special case of this setting where for each12

task, the starting point of the feasible processing interval is equal to the arrival time. Note that to date, provable13

performance guarantees for fixed interval scheduling problems with arbitrary weight values only exist in offline, online14

but preemptive, or settings with some special uniformity assumptions (Erleback & Spieksma 2000, Miyazawa &15

Erleback 2004, Bender et al. 2017, Yu & Jacobson 2020). Therefore, to our best knowledge, Theorem 2 in our paper is16

the first result which provides provable approximation ratio for a deterministic algorithm in an online non-preemptive17

setting. Note that with some modifications, our proof can also be extended to the general online non-preemptive setting,18

i.e., online interval scheduling with arbitrary weight values, no preemption, and machine dependent processing time.19

R1. Re: the presence of the reward of the Greedy algorithm in the approximation guarantee is not desirable: Indeed, we20

can remove the dependence on the performance of the online greedy algorithm in the approximation ratio as suggested21

by the reviewer. For example, when D ∈ O(1), we have r(π+) ∈ Ω(T ). Therefore, for settings with BT = o(T ) we22

get constant approximation ratio. Note that we also mentioned this in line 208. The reason we still used the form23

described in Theorem 2 is to provide a convenient way to compare the performance of the online greedy with the24

proposed bandit algorithm (see Appendix E for more details). We will update our paper to reflect this comment.25

Re: the bandit version’s approximation guarantee is much weaker than the offline version when the delays are not big,26

and the path variance is small: This is indeed unavoidable. For example, consider the case of D = 1 for all the arms27

and time steps (i.e., there is no blocking). In this scenario, it is easy to see that online greedy becomes optimal. On the28

other hand, it is also known that in this case, the regret lower bound of bandit algorithms (against the optimal solution)29

is Θ(
√
TB) (see, e.g., Auer et al. 2002, Cesa-Bianchi & Lugosi 2006, Lattimore & Szepesvári 2019).30

Re: keeping track of the rewards during each phase when BT is small and the phase length ∆T is long: This is indeed31

a good idea, as when D = 1 (i.e., there is no blocking), Optimistic Mirror Descent (OMD) works with this insight and32

typically gives the best BT dependent bound (Wei & Luo 2018). However, OMD requires maintaining a probability33

distribution over all the arms and this is not possible in our setting because of arbitrary blockings. BT measures the34

change in reward over consecutive rewards, but tracking such a change is not possible in a round if an arm is blocked.35

R2. Re: The hardness result for the offline problem with small blocking values: We can easily extend our current proof36

to the case of T >> D. In particular, Let T0 = n+m = D. We use the same proof in the paper but replace T with T0.37

Now assume that T >> T0 (and thus, T >> D). For any T0 < t ≤ T , we set the rewards to be 0 and blocks = 1 for38

all the arms. It is still true that the optimal solution of this instance is linked to the solution of the original 3-SAT.39

Re: Whether the O(max blocking length) performance gap is necessary: We would like to highlight that there are 240

performance gap results in our paper: (i) The approximation ratio between the online greedy and that of the offline41

optimal, and (ii) the regret between the bandit setting and the online greedy algorithm. For the latter, after the submission42

of the paper we have managed to derive a general lower bound of Θ(
√
BDT ) (to prove this we reduced the problem of43

combinatorial bandits with limited changes to our setting). Thus, the dependence of the regret bound on Θ(
√
D) is44

necessary. For the approximation ratio of the online greedy, it is true that we do not know whether our result is tight.45

Therefore, it remains future work to investigate this case.46

R3. Re: more comprehensive numerical analysis needed: We indeed only focus on the theoretical analysis of the47

blocking bandit model. The numerical results in Appendix E is only for supporting the theoretical comparison between48

Greedy-BAA and RGA. In particular, Eqs (19) and (20) from Appendix E show that Greedy-BAA is significantly better49

than RGA when BT is small (i.e., the regret bound of RGA is O(
√

T/BT )-time larger). Hence the choice of BT = 3.50

R4. Re: It seems like the main idea follows the standard reduction form bandit to full feedback with some non-trivial51

adaptation: We agree with the reviewer that the theoretical analysis of the bandit part is a non-trivial adaptation of52

known techniques. However, we believe that this part still has its merits, as it provides a neat analysis for a new53

and interesting bandit problem, laying the foundation for other adversarial blocking bandit models (e.g., contextual,54

combinatorial, etc). This, combined with the other contributions of the paper, make our findings novel.55


