
We thank the reviewers for their constructive feedback. All the reviewers agree that the proposed method, multi-1

label contrastive predictive coding (ML-CPC), leads to mutual information estimators with lower bias at negligible2

computational cost, and its value is demonstrated empirically on mutual information estimation, knowledge distillation3

and unsupervised representation learning. Here, we answer some major questions raised by the reviewers.4

[R1] Did you tune for each case separately in the knowledge distillation experiments? No. We use the default5

hyperparameter setting of a = 0.0 (which is without KD loss) and b = 0.8 (which is the weight of distillation loss6

against classification loss) for all CPC and ML-CPC experiments. This is the default setting given by the CRD7

implementation here1, and we did not tune that specifically for our case. We will clarify this in the final version.8

[R1] Please include variances for KD results. Thanks for the suggestion. Our results are averaged over 3 seeds, but9

unfortunately we were not able to include variances due to width limitations, which is around 0.2 for each case. We will10

include variances in the supplementary material and add a reference to this in the main paper in the final version.11

[R1] The expectation symbol seems redundant. We believe this is necessary since our lower bound arguments12

would rely on taking the expectation; the objective value for some mini-batch is not necessarily a lower bound to the13

mutual information of the entire distribution.14

[R1] Joint and separable critic? Our setup follows that of [Poole et al. 2019]2. “Joint” means a single neural15

network f(x, y) is used, while “separable” means that the inner product of two separate neural networks g(x)>h(y)16

is used. “Joint” is more flexible, but requires O(NM) network evaluations for each batch, while “separable” is less17

flexible but only requires O(N +M) evaluations. We will explain this more clearly in the final version.18

[R2] Why is ML-CPC expected to have higher variance than CPC? It is indeed difficult to provably compare the
variance between ML-CPC and CPC since under finite n and m, it is hard to obtain the optimal critic in closed form,
except for some special cases (although for the same α, the variances seem similar). However, we believe that for
α1 < α2, the variance of α1-ML-CPC tends to be larger than that of α2-ML-CPC (and similar for CPC). Apart from
the usual bias-variance trade-off argument that you mentioned, our intuition for this is as follows. The target of the
(ML)-CPC objectives is to estimate density ratio r(x, y) = p(x, y)/p(x)p(y) with
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where smaller α indicates that the estimates are more flexible (i.e. being able to take larger values), so this estimate19

becomes larger for large r(x, y) and relatively the same for small r(x, y), which increases variance. We will add a20

discussion about this in the final version.21

[R3] ImageNet results. We tried modifying the knowledge distillation code for ImageNet (since the code for ImageNet22

is not provided out-of-the-box), but were unable to fully reproduce the results in the CRD paper, so the results here23

remain inconclusive. As of now, we are still running the representation learning experiments, which takes days with 424

GPUs; we will update ImageNet results in the final version, where we would have more time to run the experiments.25

[R3] Why do ML-CPC estimates surpass MI without smoothing for α = 0.001, 0.0001? First, while our results26

guarantee that the expectation of batch-based estimates to be a lower bound, and we optimize an unbiased estimate27

to the lower bound via SGD, it is still possible for estimates of particular batches to exceed MI. Second, our theory28

guarantees the lower bound property for α ≈ 1/128 (since batch size is 128), so for α = 0.001, 0.0001 we do not have29

guarantees. Nevertheless, we wished to demonstrate that these choices of α can still be used empirically; we will clarify30

this in the final version.31

[R4] “In Sec 2, . . . should it be "minimize L(g)"?32

It is indeed a maximization. Our goal is to “maximize” mutual information through unbiased estimates of a lower33

bound to it; the setup is analogous to maximizing the “evidence lower bound” in variational inference.34

[R4] “... why Lα(g) is upper bounded by log(m/α)”? Because our critic g outputs only positive values, the division
in the expectation satisfies:
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Taking the expectation over values that are not greater than log(m/α) then proves the claim. We will add a lemma to35

support this claim in the final version.36

[R1] [R2] [R3] Typos and Figures Thank you for the suggestion; we will fix these issues in the final version.37
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