
We thank the reviewers for the constructive feedback. We will incorporate the valuable suggestions in the revised1

version. We included prior works suggested by R1 and R5 in Section 6 and moved SAC+DIAYN results to the main2

text (R4 and R5).3

R1: Worst case objective in Equation 1, min over Stest vs summation. Thank you for catching this important typo.4

The summation should actually be a min, and we will fix this in the revised paper. The motivation in Section 4.1 above5

Eq 1 and all references and theoretical results using the equation are consistent with a min, rather than a summation.6

R1: Complexity of Π̄. As noted in Proposition 4’s proof, SMERL finds an optimal policy for each MDP in Stest, if7

|Π̄| ≥ |Sπ∗M,ε|. The set Sπ∗M,ε is generally going to be much smaller than Π, so we can choose a size of Π̄ that is much8

smaller than |Π|. However, |Sπ∗M,ε| is still large, and as we note in Remark 2, metric space smoothness assumptions on9

MDPs in Stest are needed to to obtain reasonable, non worst-case performance guarantees for all test MDPs when a10

smaller Π̄ is used. A natural next step is to perform an analysis with smoothness assumptions, and we will include this11

analysis in the final version. In our practical SMERL algorithm that we use for our experiments, Π̄ is restricted to only12

contain 5 policies, so the optimum Π̄ is much smaller than Π.13

R1: SMERL vs hyperpolicy (e.g., PGPE). A key consequence of this prior approach is that the discriminator in14

SMERL would need to predict the policy parameters, which is more difficult than predicting a low-dimensional latent15

variable in a latent-variable policy. Additionally, the PGPE paper does not consider the problem of few-shot robustness.16

R1: Choice of latent distribution. p(Z) is the uniform distribution over the space of latent variables. In our17

experiments, Z is a uniform random variable over a discrete set of values. We choose p(Z) to be uniform to maximize18

the entropy H(Z) over the latent variables, which is needed to maximize I(st; z) in Equation 3.19

R3: Environments where SMERL is expected to succeed. We will add a discussion of settings in which we expect20

SMERL to not succeed and add an experimental setup in which we expect SMERL to fail, for example by making a21

perturbation non-local (e.g. many obstacles rather than a single obstacle).22

R3: Assumption: near-optimal policies on the train MDPs will be near-optimal for the test environments. We23

agree that this assumption will not hold in all real-world problem settings. We expect this to hold in settings where24

an environment changes locally (i.e. a few nearby states) and there is another path that is near optimal. This is often25

true in real robot navigation and manipulation problems when there are a small number of new obstacles or local26

terrain changes. We also expect it to be true when there is a large action space (e.g. recommender systems) and local27

perturbations (e.g. changes in the content of a small number of items).28

R3: Report performance of all the SMERL policies...report which policy is selected. We added a brief sum-29

mary of these results on the HalfCheetah-Goal + Obstacles perturbation environment in the following table. We30

will add a more detailed empirical analysis of policy performance and selection by SMERL to the revised paper.31

Obstacle Policy ID (zi)
Height 0 1 2 3

0.0 -72.2 -87.2 -86.1 -107.9
0.15 -72.2 -87.2 -86.1 -107.9
0.3 -653.2 -721.1 -86.1 -1004.3
0.45 -690.1 -761.6 -86.1 -1004.3

32
R4: Optimal reward computation. The optimal return is the expected33

discounted sum of rewards obtained over an entire episode by the optimal34

policy. In practice, we estimate the optimal return by measuring the35

return achieved by a trained SAC agent’s policy over the whole trajectory36

averaged over different initial states. In SMERL, we compare the current37

policy’s whole trajectory return with the optimal return.38

R4: Difference between the optimal return and the current policy’s return with different initial states. In the39

experiments, the variability in the initial state distribution was small, so the SMERL policy’s trajectory return for each40

episode was individually compared with the optimal return estimate. In other environments, a separate optimal return41

estimate for different initial state regions may be required.42

R4: Selection of ε. We experimented with different values of ε on the HalfCheetah-Goal + Obstacle task (see Fig. 5 in43

App. B). We computed the percentage of the optimal return that this ε value corresponds to, and used this percentage to44

select ε for all environments. We have added a description of this protocol to the revised paper.45

R4: SAC+DIAYN. SAC+DIAYN uses a weighted sum of the environment and DIAYN reward. We experimented with46

3 different weights on the DIAYN reward on the HalfCheetah-Goal + Obstacle test environment and found SMERL to47

consistently outperform SAC+DIAYN. We have included these results in the revised paper.48

R5: RARL. For RARL, we performed a grid search on HalfCheetah-Goal with evaluation on the Obstacles perturbation49

to select the hyper-parameters of TRPO, the policy optimizer for the protagonist and adversarial policies. We then kept50

these hyper-parameters fixed for all environments. We have added a detailed description to the revised paper.51

R5: How are latent variables sampled? During both the learning (see Alg 1) and the adaptation phases, the latent52

variable z is sampled at the beginning of an episode and is held fixed for the episode. We will clarify this Section 4.2.53

R5: How is the hyper-parameter B used? The hyper-parameter B is associated with epsilon in Equations 2-5. It is54

the return value that SMERL must achieve prior to the unsupervised reward being added to the objective. Specifically,55

B = RM(π∗M)− ε. We have added this description to the revised paper.56

