
Appendices

A Proofs

Proposition 1. For each MDP M′ in the MDP robustness set SM,ε, π∗M′ exists in the policy
robustness set Sπ∗M,ε.

Proof. This result follows by the definition of the set SM,ε.

Proposition 2. Given an MDPM and each policy π in the policy robustness set Sπ∗M,ε, there exists
an MDPM′ = (S,A, P̄, R̄, γ, µ) such thatM′ ∈ SM,ε and π = π∗M′ .

Proof. This argument can be shown by first noting that the value of any policy, π, in an MDP can be
written as, Qπ(P) = (I − γPπ)−1 [R]. Now, for any given policy π ∈ Sπ∗M,ε, we show that we can
modify the dynamics to P ′ such that Qπ(P ′) ≥ Qπ′(P ′), for all other policies π′. Such a dynamics
P ′ always exists for any policy π, since for any optimal policy π′ in the original MDP with transition
dynamics P , we can re-write P · π as P · π′ = P · π′ · ππ′ and by modifying the transition dynamics,
as P ′ = P · ππ′ . With this transformation, π′ is optimal in this modified MDP with dynamics P ′.

Proposition 3. The solution to the objective in Equation 1 is the same as the solution to the objective
in Equation 6 when Stest = SM,ε.

Proof. We first note that for any optimal policy π∗M′ of an MDP M′ ∈ SM,ε, the trajectory
distribution in the original MDP, pM(τ |π∗M′), is the same as the trajectory distribution in the
perturbed MDP,M′, pM′(τ |π∗M′), due to the definition of SM,ε. Formally,

∀M′ ∈ SM,ε, pM′(τ |π∗M′) = pM(τ |π∗M′).

Thus our problem reduces to learning a policy π that attains the same trajectory distribution as
π∗M′ in MDPM′, which is also the trajectory distribution of π∗M′ inM. Further, we know that
the policy π∗M′ is contained in the policy robustness set, Sπ∗M,ε, hence, there exists at least one
policy in set Π̄, that generates the same trajectory distribution, and as a result, maximizes the
expected likelihood, maxπ∈Π̄Eτ∼π′ [log p(τ |π)], for any policy π′ ∈ Sπ∗M,ε. We call this "trajectory
distribution matching."

The objective in Equation 6 precisely uses this connection – it searches for a set of policies, Π̄, such
that at least one policy π′ ∈ Π̄ maximizes the expected log-likelihood of trajectory distribution, i.e.
matches the trajectory distribution, of any given policy π∗M′ ∈ Sπ∗M,ε, which is identical to the set
of optimal policies forM′ ∈ SM,ε. Moreover, this likelihood-based "trajectory matching" can be
performed directly in the original MDP,M, since optimal policies forM′ admit the same trajectory
distribution in bothM andM′, hence proving the desired result.

Proposition 4. [Informal] With usual notation and for a sufficiently large number of latent variables,
the set of policies Π∗ that result from solving the optimization problem in Equation 6 is equivalent to
the set of policies πθ∗,z that result from solving the optimization problem in Equation 2.

We formalize this statement as follows:
With usual notation and for |Z| = |Π̄| ≥ |Sπ∗M,ε|, Π∗ = {πθ∗,z}.

Proof. Given that |Π̄| ≥ |Sπ∗M,ε|, we can rewrite the optimization problem in Equation 6 as:

min
π̂∈Sπ∗M,ε

[max
π∈Π̄

Eτ∼π̂ log p(τ |π)]. (7)

Note that under deterministic dynamics, we have:

Eτ∼π̂ log p(τ |π) =
∑

Eat∼π̂[log π(at|π)].

14

Let p(x) = π̂, and let q(x) = π. Then, we have:

min
p(x)

max
q(x)

Ex∼p(x)[log q(x)]

We know that
Ex∼p(x)[log p(x)− log q(x)] ≥ 0.

This implies that:
max
q(x)

Ex∼p(x)[log q(x)] = −H(p(x)).

whereH is Shannon entropy.

Hence,

min
p(x)

max
q(x)

Ex∼p(x)[log q(x)] = min
p(x)
−H(p(x)) = max

p(x)
H(p(x))

= max
q(x)
H(q(x)) = max

π
H(p(τ |π)) = max

π
I(τ, z).

where the last equality holds sinceH(τ |z) = 0 under our assumption that |Π̄| is sufficiently large.

Remark 1. When |Z| < |Sπ∗M,ε|, the conditional entropy H(τ |z) is non-zero, so we constrain the
conditional entropy to be small. This results in maximizing H(τ) and minimizing H(τ |z) which
overall maximizes the mutual information I(τ, z).

Remark 2. When |Z| < |Sπ∗M,ε|, we require a metric defined on the space of trajectories in order
to quantify how much better it is to choose one policy with respect other policies in the set of
latent-conditioned policies.

B Experimental Setup and Additional Results

For all experiments, we used a NVIDIA TITAN RTX GPU. SAC and SMERL train in 25 minutes
on the 2D Navigation task. All agents train in 6 hours on the Walker-Velocity and Hopper-Velocity
environments. All agents train in 1.5 hours on HalfCheetah-Goal.

B.1 Environments

In the 2D navigation environment, the reward function is the negative distance to the goal position.
The agent begins at (x, y) = (0, 0), and the goal position is at (3.5, 3.5).

In HalfCheetah-Goal, the goal location is at (3.0, 0.0), where the first coordinate is the x-position and
the second coordinate is the y-position. The reward function is the negative absolute value distance to
the goal, computed by subtracting the x-position of the goal from the x-position of the agent. The
max episode length is 500 time steps. In Walker-Velocity and Hopper-Velocity, the target velocity
is 5.0. The reward function adds min(velocityt, 5.0) to the original reward functions rt of Walker /
Hopper, where velocityt is the agent’s velocity at the current time step t. The max episode length is
200 time steps. In all environments, the agent’s starting position is at (0, 0).

The test perturbations are constructed as follows. For the obstacle perturbation, an obstacle is
present at (0.001, 0.0) for HalfCheetah-Goal + Obstacle, and at (2.5, 0.0) for Walker-Velocity and
Hopper-Velocity. Each obstacle test environment has an obstacle with a different height, and the
obstacle heights vary from 0.0 to 0.6. For the force perturbation, a negative force is applied at the
fifth joint of the cheetah, walker, and hopper agents, from time step t1 = 10 to t2 = 15. Each force
test environment has a different force amount applied, and the force varies from 0 to −1900 for the
HalfCheetah-Goal + Force test environments, and it varies from 0 to −190 for the Walker-Velocity +
Force and Hopper-Velocity + Force test environments. For the motor failure perturbation, actions 0,
1, 3, and 4 are zeroed out for the cheetah agent, actions 0 and 1 for the walker agent, and actions 0
and 1 for the hopper agent, from time steps 10 to 10 + t. Each test environment has a unique t, where
t varies from 0 to 100.

15

Figure 5: Figure comparing the robustness of SAC with 1 Policy, SAC with 5 Policies, DIAYN,
SAC+DIAYN, RARL, and SMERL on 3 types of perturbations, on HalfCheetah-Goal Walker-
Velocity, and Hopper-Velocity. SMERL is more consistently robust to environment perturbations
than other maximum entropy, diversity seeking, and robust RL methods. We plot the mean across 3
seeds for all test environments. The shaded region is 0.5 standard deviation below to 0.5 standard
deviation above the mean.

B.2 Hyperparameters

Table 3 lists the common SAC parameters used in the comparative evaluation in Figure 4, as well as
the values of α and ε used in SMERL. While the policies learned on the train MDP are stochastic,
during evaluation, we select the mean action (SAC, DIAYN, and SMERL). This does not make the
performance worse for any of the approaches.

To estimate the optimal return value that SMERL requires, we trained SAC on a single training
environment using 1 seed. We used the final SAC performancee (the SAC return RSAC) on each
train environment as the optimal return value estimate for that environment. We then selected a
value of ε for SMERL to set a return threshold RSAC − ε above which the unsupervised reward
is added, and a value of α which weights the unsupervised reward. To select ε and α, we trained
SMERL agents with a single seed on HalfCheetah-Goal using α ∈ {0.1, 0.5, 1.0, 10.0} and ε ∈
{0.1RSAC, 0.2RSAC, 0.3RSAC}, and evaluated their performance on a single HalfCheetah-Goal +
Obstacle (obstacle height = 0.2). We used the same protocol to select α for SAC+DIAYN. We found
α = 10.0 and ε = 0.1RSAC to work best for SMERL and α = 0.5 to work best for SAC+DIAYN. We
used these values when training SMERL and SAC+DIAYN and evaluating on all test environments.

RARL required more data to reach the same level of performance as a fully-trained SAC agent on
each training environment, so we trained RARL for 5× the number of environment steps as SAC,
SMERL, DIAYN, and SAC+DIAYN. RARL trains a model-free RL agent jointly with an adversary
which perturbs the agent’s actions. We train the adversary to apply 2D forces on the torso and feet

16

Hyperparameters for 2D Navigation experiment
Parameter Value
optimizer Adam
learning rate 3 · 10−4

discount (γ) 0.99
replay buffer size 103

number of hidden layers 2
number of hidden units per layer 32
number of samples per minibatch 128
nonlinearity RELU
target smoothing coefficient (τ) 0.01
target update interval 1
gradient steps 1
SMERL: value of α 10.0
SMERL: value of ε 0.05RSAC

Table 2: Hyperparameters used for SAC and SMERL for the 2D navigation experiment.

Hyperparameters for continuous control experiments
Parameter Value
optimizer Adam
learning rate 3 · 10−4

discount (γ) 0.99
replay buffer size 103

number of hidden layers 2
number of hidden units per layer 256
number of samples per minibatch 256
nonlinearity RELU
target smoothing coefficient (τ) 0.005
target update interval 1
gradient steps 1
SMERL: value of α 10.0
SMERL: value of ε 0.1RSAC

Table 3: Hyperparameters used for SAC, DIAYN, SAC+DIAYN, and SMERL for continuous control
experiments.

of the cheetah, walker, and hopper in HalfCheetah-Goal, Walker-Velocity, and Hopper-Velocity,
respectively, following the same protocol as done by the authors [32]. Hyperparameters of TRPO,
the policy optimizer for the protagonist and adversarial policies in RARL, are selected by grid
search on HalfCheetah-Goal, evaluating performance on one HalfCheetah-Goal + Obstacle test
environment (obstacle height = 0.2). These hyperparameters were then kept fixed for all experiments
on HalfCheetah-Goal, Walker-Velocity, and Hopper-Velocity.

B.3 Hyperparameter Sensitivity Analysis

We also a perform a more detailed hyperparameter sensitivity analysis for SMERL and SAC+DIAYN.
On HalfCheetah-Goal, we examine the effect of varying ε and α on the evaluation performance of
SMERL (see Figure 6. We perform this hyperparameter study on two test environments: HalfCheetah-
Goal + Obstacle and HalfCheetah-Goal + Force. We find that the robustness of SMERL is sensitive
to the choice of ε: ε = 0.1R results in policies that are more robust to the environment perturbations,
and α = 10.0 generally works best.

On HalfCheetah-Goal and WalkerVelocity, we also examine the effect of varying α, the weight by
which the unsupervised reward is multiplied, on the evaluation performance of SAC+DIAYN (see
Figure 7). We find that the robustness of SAC+DIAYN is sensitive to the choice of α, and α = 0.5
leads to the most robust performance. As noted in Appendix B.2, we found α = 0.5 to be the best
value for SAC+DIAYN after evaluating its performance for a single seed on one of the obstacle
perturbation environments, and we therefore used this value of α for our experiments in Section 7.

17

Figure 6: On HalfCheetah-Goal, we study the effects on performance when (a) varying ε in the
obstacle test environments, (b) varying ε in the force test environments, (c) varying α in the obstacle
test environments, and (d) varying α in the force test environments. In (a) and (b), α = 1.0, and in (c)
and (d), ε = 0.1R, whereR is the return achieved by a trained SAC policy on the training environment.
For a single seed, we plot the mean performance over 5 runs of the best latent-conditioned policy
on each test environment. SMERL is more sensitive to hyperparameter settings in the obstacles test
environments as compared to the force test environments.

Figure 7: On the Obstacle and Force test environments for HalfCheetah-Goal and WalkerVelocity,
we study the effect of varying α, the weight by which the unsupervised reward is multiplied, on the
evaluation performance of SAC+DIAYN. For a single seed, we plot the mean performance over 5
runs for the best latent-conditioned policy. We find that α = 0.5 leads to the most robust performance
across varying degrees of perturbations to the training environment.

B.4 SMERL Policy Selection

We report the performance achieved by all SMERL policies on a subset of the obstacle and force test
environments (see Tables 4 - 9). We also report which policy is selected by SMERL on each of the
test environments. The results reported are for a single seed. We find that different SMERL policies
are optimal for different degrees of perturbation to the training environment (with the exception of
the HalfCheetahGoal + Obstacle test environments). In particular, the best performing policy on the
train environment is not necessarily the best policy on the test environments. Further, policy selection
may differ between different types of test perturbations. For example, on HalfCheetah-Goal, policy 5
is consistently the best for varying obstacle heights, whereas policies 1, 2, and 3 are sometimes better
than policy 5 on the force perturbation test environments.

B.5 When does SMERL Fail?

SMERL works well on test environments for which the test environment’s optimal policy is only
slightly sub-optimal on the train environment, as described in Definition 1. This assumption will
not hold in all real-world problem settings, and in those settings, SMERL will not be robust to test
environments. However, we expect this assumption to hold in settings where an environment changes
locally (i.e. a few nearby states) and there is another path that is near optimal. This is often true in real
robot navigation and manipulation problems when there are a small number of new obstacles or local
terrain changes. We also expect it to be true when there is a large action space (e.g. recommender
systems) and local perturbations (e.g. changes in the content of a small number of items).

In the continuous control experiments in Section 7, we found that when the degree of perturbation
increases in a test environment relative to the train environment (e.g. obstacle height, force magnitude,
number of time steps for which motor failure occurs), SMERL’s performance decreases. This result
occurs because the difference between the train environment’s optimal returnRM(π∗M) and the return

18

Obstacle
Height

Policy 1 Policy 2 Policy 3 Policy 4 Policy 5

0.0 -86.3 -87.2 -133.1 -77.0 -72.3
0.1 -79.4 -80.5 -79.1 -78.6 -74.3
0.2 -76.8 -81.7 -71.9 -80.1 -69.5
0.3 -78.7 -88.0 -72.9 -81.6 -68
0.4 -85.9 -87.7 -88.2 -74.0 -69.7
0.5 -83.2 -87.3 -72.9 -78.2 -68.5

Table 4: SMERL policy performance and selection on HalfCheetah-Goal+Obstacle test environments.

Force Magnitude Policy 1 Policy 2 Policy 3 Policy 4 Policy 5

0.0 -86.3 -87.2 -133.1 -77.0 -72.3
100.0 -88.9 -92.8 -87.5 -107.8 -83.8
300.0 -222.7 -357.0 -397.9 -1238.7 -424.1
500.0 -868.9 -528.3 -283.7 -1196.3 -669.5
700.0 -1046.6 -951.5 -769.7 -1758.8 -913.9
900.0 -1249.3 -1238.3 -1425.1 -1264.4 -1282.5

Table 5: SMERL policy performance and selection on HalfCheetah-Goal+Force test environments.

Obstacle
Height

Policy 1 Policy 2 Policy 3 Policy 4 Policy 5

0.0 894.2 854.6 793.8 853.5 856.3
0.1 891.6 648.6 659.0 830.5 693.2
0.2 688.8 439.9 640.0 764.8 600.1
0.3 766.3 513.8 452.5 701.2 464.2
0.4 500.4 459.9 576.0 613.5 463.7
0.5 454.1 434.9 479.3 434.5 462.1

Table 6: SMERL policy performance and selection on WalkerVelocity+Obstacle test environments.

Force Magnitude Policy 1 Policy 2 Policy 3 Policy 4 Policy 5

0.0 894.2 854.6 793.8 853.5 856.3
10.0 890.7 850.3 825.3 874.5 849.8
30.0 884.0 810.1 383.5 243.4 837.5
50.0 787.6 19.4 380.9 656.1 185.0
70.0 474.8 513.9 27.6 54.7 6.4
90.0 34.6 39.0 30.0 122.2 2.7

Table 7: SMERL policy performance and selection on WalkerVelocity+Force test environments.

Figure 8: The relationship between sub-optimality (RM(π∗M)−RM(π∗M′)) and SMERL’s perfor-
mance on the Walker-Velocity + Force test environments.

19

Obstacle
Height

Policy 1 Policy 2 Policy 3 Policy 4 Policy 5

0.0 663.9 658.0 612.6 630.0 630.8
0.1 661.7 652.6 612.1 630.8 630.6
0.2 666.2 653.8 610.9 630.2 631.4
0.3 514.1 604.6 608.4 631.5 600.7
0.4 535.9 556.7 539.4 557.4 552.8
0.5 528.3 562.3 539.1 552.5 546.7

Table 8: SMERL policy performance and selection on HopperVelocity-Goal+Obstacle test environ-
ments.

Force Magnitude Policy 1 Policy 2 Policy 3 Policy 4 Policy 5

0.0 663.9 658.0 612.6 630.0 630.8
10.0 667.9 655.5 611.5 629.7 629.7
30.0 671.7 633.5 614.1 626.3 630.3
50.0 667.5 617.6 602.4 622.6 632.1
70.0 376.3 585.0 617.9 612.4 630.0
90.0 191.0 547.1 632.8 605.4 635.2

Table 9: SMERL policy performance and selection on HopperVelocity-Goal+Force test environments.

achieved by the test environment’s optimal policy on the train environmentRM(π∗M′) increases as the
perturbation amount increases. We verify this experimentally by comparing RM(π∗M)−RM(π∗M′)
to SMERL’s return on the Walker-Velocity + Force test environments (see Figure 8). Concretely,
the train MDPM is Walker-Velocity with no force applied, and the test MDPsM′ have various
magnitudes of force applied. We find that asRM(π∗M)−RM(π∗M′) increases, SMERL’s performance
on the corresponding test MDPM′ decreases.

20

