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Abstract

Stationary stochastic processes (SPs) are a key component of many probabilistic
models, such as those for off-the-grid spatio-temporal data. They enable the statis-
tical symmetry of underlying physical phenomena to be leveraged, thereby aiding
generalization. Prediction in such models can be viewed as a translation equiv-
ariant map from observed data sets to predictive SPs, emphasizing the intimate
relationship between stationarity and equivariance. Building on this, we propose
the Convolutional Neural Process (ConvNP), which endows Neural Processes (NPs)
with translation equivariance and extends convolutional conditional NPs to allow
for dependencies in the predictive distribution. The latter enables ConvNPs to be de-
ployed in settings which require coherent samples, such as Thompson sampling or
conditional image completion. Moreover, we propose a new maximum-likelihood
objective to replace the standard ELBO objective in NPs, which conceptually sim-
plifies the framework and empirically improves performance. We demonstrate the
strong performance and generalization capabilities of ConvNPs on 1D regression,
image completion, and various tasks with real-world spatio-temporal data.

1 Introduction

Incorporating appropriate inductive biases into machine learning models is key to achieving good
generalization performance. Consider, for example, predicting rainfall at an unseen test location from
rainfall measurements nearby. A powerful inductive bias for this task is stationarity: the assumption
that the generative process governing rainfall is spatially homogeneous. Given only observations in
a limited part of the space, stationarity allows the model to extrapolate to yet unobserved regions.
Closely related to stationarity is translation equivariance (TE). TE formalizes the intuitive idea that
if observations are shifted in time or space, then the resulting predictions should be shifted by the
same amount. When stationarity or TE is appropriate, e.g. in time-series [31], images [22], and
spatio-temporal modelling [8, 7], incorporating them into our models yields significant benefits.

A general framework for these tasks is to view them as prediction of a stochastic process (SP;
[32]). This principled approach has inspired a new set of deep learning architectures that bring
the expressivity and fast test-time inference of deep learning to SP modelling. Conditional Neural
Processes (CNPs; [10]) use neural networks to directly parameterize a map from data sets to predictive
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SPs, which is trained via meta-learning [34, 39]. However, CNPs suffer from several drawbacks
that inhibit their use in scenarios where other SP models, e.g. Gaussian processes (GPs; [29]), often
succeed. First, vanilla CNPs cannot account for TE as an inductive bias. This was recently addressed
with the introduction of ConvCNPs [13]. Second, both CNPs and ConvCNPs are limited to factorized,
parametric predictive distributions. This makes them unsuitable for producing coherent predictive
function samples or modelling complicated likelihoods. Neural Processes (NPs; [11]), a latent
variable extension of CNPs, were introduced to enable richer joint predictive distributions. However,
the NP training procedure uses variational inference (VI) and amortization, which are known to suffer
from certain drawbacks [40, 6]. Moreover, existing NPs do not incorporate TE.

This paper builds on ConvCNPs and NPs [11, 13] to develop Convolutional Neural Processes
(ConvNPs). ConvNPs are a map from data sets to predictive SPs that is both TE and capable of
expressing complex joint distributions. As training ConvNPs with VI poses technical and practical
issues, we instead propose a simplified maximum-likelihood objective, which directly targets the
predictive SP. We show that ConvNPs produce compelling samples and generalize effectively, making
them suitable for a broad range of spatio-temporal prediction tasks. Our key contributions are:

1. We introduce ConvNPs, extending ConvCNPs to model rich joint predictive distributions.
2. We propose a simplified training procedure, discarding VI in favor of an approximate maximum-

likelihood procedure, which improves performance for ConvNPs.
3. We demonstrate the usefulness of ConvNPs on toy time-series experiments, image-based sampling

and extrapolation, and real-world environmental data sets.

2 Problem Set-up and Background

Notation. The main paper provides an informal treatment of ConvNPs. We refer the reader to the
supplement for precise definitions and statements. Let X = Rdin ,Y = R denote the input and output
spaces, and let (x, y) be an input-output pair. Let S be the collection of all finite data sets, with
Dc, Dt ∈ S a context and target set respectively. We will later consider predicting the target set from
the context set as in [10, 11]. LetXc,yc be the inputs and corresponding outputs of Dc, withXt,yt
defined analogously. We denote a single task as ξ = (Dc, Dt) = ((Xc,yc), (Xt,yt)). Let P(X )
denote the collection of stochastic processes on X , and let Cb(X ) denote the collection of continuous,
bounded functions on X .

2.1 Meta-Learning Stochastic Process Prediction

Consider rainfall y as a function of position x. To model rainfall, we can view it as a random
function from X to Y . Mathematically, this corresponds to a SP on X—a probability distribution
over functions from X to Y—which we denote by P . Given perfect knowledge of P , we could
predict rainfall at any location of interest by conditioning P on observations Dc, yielding a predictive
SP. However, in practice we will only have access to a large collection of sample functions from P .
Each function is known only at a finite set of inputs, D = (xn, yn)Nn=1, which we divide into Dc, Dt

for meta-training. Given sufficient data, we can meta-learn the map from context sets Dc to the
ground-truth predictive distribution: Dc 7→ p(yt|Xt, Dc) = p(yt,yc|Xt,Xc)/p(yc|Xc). As long
as the predictives for varyingXt are Kolmogorov-consistent [37, Section 2.4], this corresponds to
learning a map from data sets directly to predictive SPs. We refer to the map that takes a context set
Dc to the exact ground truth SP conditioned on Dc as the prediction map πP : S → P(X ) (details in
App A). The general prediction problem may then be viewed as learning to approximate πP .

2.2 Translation Equivariance and Stationarity

The prediction map πP possesses two important symmetries. First, πP is invariant to permutations of
Dc [43, 13]. Second, if the ground truth process P is stationary, then πP is translation equivariant:
whenever an input to the map is translated, its output is translated by the same amount (see App B for
formal definitions and proofs). This simple statement highlights the intimate relationship between
stationarity and TE. Moreover, it suggests that models for the prediction map should also be TE and
permutation invariant. As such models are a small subset of the space of all models, building in
these properties can greatly improve data efficiency and generalization for stationary SP prediction.
In Sec 3, we extend the TE maps of Gordon et al. [13] (reviewed next) to construct a rich class of
models which incorporate these inductive biases.
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1 Context setDc 2 Encoder: z ∼ ConvCNP(Dc) 3 Decoder: f = d(z)

Eφ Dθ

Figure 1: ConvNP encoder-decoder architecture. The encoder is a ConvCNP which takes the context
set as input (left panel) and outputs a single sample of z (center panel). The decoder takes this as
input and outputs a predictive sample (right panel blue; two other samples shown in grey).

2.3 Convolutional Conditional Neural Processes

We review ConvCNPs [13], which are an important building block in our proposed model. ConvCNPs
can be viewed from the perspective of SP prediction, revealing their key limitations. Given a context
set Dc, the ConvCNP models the predictive distribution over target outputs as:

pφ(yt|Xt, Dc) =
∏

(x,y)∈Dt
N (y;µ(x, Dc), σ

2(x, Dc)). (1)

The mean µ( · , Dc) and variance σ2( · , Dc) are parametrized by convolutional deep sets (Con-
vDeepSets; [13]): a flexible parametrization for TE maps from S to Cb(X ). ConvDeepSets introduce
the idea of functional representations: whereas the standard DeepSets framework embeds data sets
into a finite-dimensional vector space [43], a ConvDeepSet embeds data sets in an infinite-dimensional
function space. ConvDeepSets are a composition of two stages. The first stage maps a data set D
to its functional representation via D 7→

∑
(x,y)∈D φ(y)ψ( · − x). Here φ(y) = (1, y) ∈ R2 and

ψ is the Gaussian radial basis function. This functional representation is then passed to the second
stage, a TE map between function spaces, implemented by a convolutional neural network (CNN).
See App C for a full description of the ConvCNP including pseudocode.

We observe that Eq (1) defines a map from context sets Dc to predictive SPs. Specifically, let
PN(X ) ⊂ P(X ) denote the set of noise GPs: GPs on X whose covariance is given by Cov(x,x′) =
σ2(x)δ[x − x′], where σ2 ∈ Cb(X ) and δ[0] = 1 with δ[ · ] = 0 otherwise. Then the ConvCNP
is a map ConvCNP : S → PN(X ) with Eq (1) defining its finite-dimensional distributions. Since
ConvDeepSets are TE, and the means and variances of ConvCNPs are ConvDeepSets, it follows
that ConvCNPs are also TE as maps from S → PN(X ) (see App D for a more formal derivation).
Unfortunately, processes in PN(X ) possess two key limitations. First, it is impossible to obtain
coherent function samples as each point of the function is generated independently. Second, Gaussian
distributions cannot model multi-modality, heavy-tailedness, or asymmetry.

3 The Convolutional Neural Process

We now present the ConvNP, which addresses the weaknesses of ConvCNPs. We introduce their
parametrization (Sec 3.1) and a maximum-likelihood meta-training procedure (Sec 3.2).

3.1 Parametrizing Translation Equivariant Maps to Stochastic Processes Using ConvNPs

The ConvNP extends the ConvCNP by parametrizing a map to predictive SPs more expressive than
PN(X ), allowing for coherent sampling and non-Gaussian predictives. It achieves this by passing
the output of a ConvCNP through a non-linear, TE map between function spaces. Specifically, the
ConvNP uses an encoder–decoder architecture, where the encoder E: S → PN(X ) is a ConvCNP
and the decoder d : RX → RX is TE (here RX denotes the set of all functions from X to R).
Conditioned on Dc, ConvNP samples can be obtained by sampling a function z ∼ ConvCNP(Dc)
and then computing f = d(z). This is illustrated in Fig 1. Importantly, d takes functions to functions
and does not necessarily act point-wise: letting f(x) depend on the value of z at multiple locations is
crucial for inducing dependencies in the predictive. This sampling procedure induces a map between
SPs, D: PN(X )→ P(X ) (see App D). Putting these together, with explicit parameter dependence
in E and D, the ConvNP is constructed as

ConvNPθ,φ = Dθ ◦ Eφ, Eφ = ConvCNPφ, Dθ = (dθ)∗,

where (dθ)∗ is the pushforward2 under dθ. In App D, we prove that ConvNPθ,φ is indeed TE.
2i.e., (dθ)∗(Eφ) is the measure induced on RX by sampling a function from Eφ and passing it through dθ .
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Figure 2: Forward pass of a ConvNP. Steps (1)-(4) depict sampling from the encoder Eφ, which is a
ConvCNP. This involves: (1) computing a functional representation of the context set, with separate
‘density’ and ‘data’ channels (described in detail in Gordon et al. [13] and App C), (2) discretizing
the representation, (3) passing the representation through a CNN, which outputs the parameters
of independent Gaussian distributions spaced on a grid, and (4) sampling from these distributions.
However, the samples at each grid point are independent of each other, hence in (5) the samples are
passed through another CNN, the decoder, to induce dependencies, and then are smoothed out.

In practice, we cannot compute samples of noise GPs (PN) because they comprise uncountably many
independent random variables. Instead, we consider a discrete version of the model, which enables
computation. Following Gordon et al. [13], we discretize the domain of z on a grid (xi)

K
i=1, with

z := (z(xi))
K
i=1. As a consequence, the model can only be equivariant up to shifts on this discrete

grid. With this discretization, sampling z ∼ ConvCNPφ(Dc) amounts to sampling independent
Gaussian random variables, and dθ is implemented by passing z through a CNN. The forward pass
of a trained ConvNP is illustrated in Fig 2. Note that CNNs are not always entirely TE due to the zero
padding that occurs at each layer. In practice, we find that this is not an issue.3 Following Kim et al.
[14], we define the model likelihood by adding heteroskedastic Gaussian observation noise σ2

y(x, z)

to the predictive function draws f = dθ(z) ∈ RX :

pφ,θ(yt|Xt, Dc) = Ez∼Eφ(Dc)

[∏
(x,y)∈Dt

N
(
y; dθ(z)(x), σ2

y(x, z)
) ]
. (2)

Although the product in the expectation factorizes, pφ,θ(yt|Xt, Dc) does not: z induces dependencies
in the predictive, in contrast to Eq (1). See App C for full implementation details for the ConvNP.

3.2 Maximum Likelihood Learning of ConvNPs

We now propose a maximum-likelihood training procedure for ConvNPs. Let the ground truth
task distribution be p(ξ) = p(Dc, Dt). Let LML(θ,φ; ξ) := log pφ,θ(yt|Xt, Dc) be the single-task
likelihood, and let LML(θ,φ) := Ep(ξ)[log pφ,θ(yt|Xt, Dc)] be the task-averaged likelihood. The
following proposition shows that maximizing LML recovers the prediction map πP in a suitable limit:

Prop 1. Let Ψ: S → P(X ) be a map from data sets to SPs, and let LML(Ψ) :=
Ep(ξ)[log pΨ(yt|Xt, Dc)] where pΨ is the density of Ψ(Dc) at Xt. Then Ψ globally maximizes
LML(Ψ) if and only if Ψ = πP . See App E for more details and conditions.

3See Gordon et al. [13, Appendix D.6] for a discussion.
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In practice, we do not have infinite flexibility in our model or infinite data to compute expectations
over p(ξ), but Prop 1 shows that maximum-likelihood training is sensible with an expressive model
and sufficient data. Letting D = {ξn}Ntasks

n=1 be a meta-training set, we can train a ConvNP by
stochastic gradient maximization of LML with tasks sampled from D. Unfortunately, for non-linear
decoders, log pφ,θ(yt|Xt, Dc) is intractable due to the expectation over z (Eq (2)). For a given task
ξ, we instead optimize the following Monte Carlo estimate of LML(θ,φ; ξ), which is conservatively
biased, consistent, and monotonically increasing in L (in expectation) [3]:

L̂ML(θ,φ; ξ) := log
[

1
L

∑L
l=1 exp

(∑
(x,y)∈Dt

log pθ(y|x, zl)
)]

; zl ∼ Eφ(Dc). (3)

One drawback of this objective is that single sample estimators are not useful, as they drive z to be
deterministic. In our experiments, we set L between 16 and 32. For further discussion of the effect
of L see App G. Eq (3) can be viewed as importance sampling in which the prior is the proposal
distribution. Prior sampling is typically ineffective as it is unlikely to propose functions that pass near
observed data. Here, however, Eφ depends on context sets Dc, which often is sufficient to constrain
prior function samples to be close to Dt. In Sec 5, we demonstrate that, perhaps surprisingly, this
estimator often significantly outperforms VI-inspired estimators (discussed next).

4 The Latent Variable Interpretation of ConvNPs

We now describe an alternative approach to training the ConvNP via variational lower bound maxi-
mization. This serves the dual purpose of relating ConvNPs to the NP family, and contrasting the
existing NP framework with our simplified, maximum-likelihood approach from Sec 3.2.

4.1 A Variational Lower Bound Approach to ConvNPs

Garnelo et al. [11] propose viewing Neural Processes as performing approximate Bayesian inference
and learning in the following latent variable model:

z ∼ pθ(z); y(x) = fθ(x; z); pθ(yt|Xt, z) =
∏

(x,y)∈Dt
N
(
y; fθ(x; z), σ2

y

)
. (4)

To train the model, they propose using amortized VI [15, 30]. This approach involves introducing a
variational approximation qφ which maps data sets S ∈ S to distributions over z, and maximizing a
lower bound (ELBO) on log pθ(yt|Xt, Dc). We can define a similar procedure for ConvNPs. For
ConvNPs, z is a latent function, qφ is a map from data sets to SPs, and fθ is a map between function
spaces. A natural choice is to use a ConvCNP and CNN for qφ and fθ, respectively. This results
in the same parameterization as in Sec 3, but a different modelling interpretation and meta-training
objective. Given a task ξ = (Dc, Dt), the ELBO for this model is:

Ez∼qφ(z|Dc∪Dt) [log pθ(yt|Xt, z)]−KL(qφ(z|Dc ∪Dt)‖p(z|Dc)).

As p(z|Dc) is intractable to compute, Garnelo et al. [11] instead propose the following objective:
LNP(θ,φ; ξ) := Ez∼qφ(z|Dc∪Dt) [log pθ(yt|Xt, z)]−KL(qφ(z|Dc ∪Dt)‖qφ(z|Dc)), (5)

where the intractable term p(z|Dc) has been substituted with our variational approximation qφ(z|Dc).
Due to this substitution, LNP is no longer a valid ELBO for the original model (Eq (4)). Rather, if we
define separate models for each context set Dc, and define the conditional prior for each model as
p(z|Dc) := qφ(z|Dc), then LNP may be thought of as performing VI in this collection of models.
However, there is no guarantee that these conditional priors are consistent in the sense that they
correspond to a single Bayesian model as in Eq (4).

For the non-discretized ConvNP, Eq (5) involves KL divergences between SPs which cannot be
computed directly and must be treated carefully [24, 36]. On the other hand, for the discretized
ConvNP, the KL divergences can be computed, but grow in magnitude as the discretization becomes
finer, and it is not clear that the KL divergence between SPs is recovered in the limit. This raises
practical issues for the use of Eq (5) with the ConvNP, as the balance between the two terms depends
on the choice of discretization.

4.2 Maximum-Likelihood vs Variational Lower Bound Maximization for Training NPs

We argue that the VI interpretation is unnecessary when focusing on predictive performance, and
particularly detrimental for ConvNPs, where z has many elements. Noting the equivalence

LNP(θ,φ; ξ) = LML(θ,φ; ξ)−KL (qφ(z|Dc ∪Dt)‖pθ(Dt|z)qφ(z|Dc)/Z) , (6)
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Table 1: Log-likelihoods on 1D regression tasks. Lower bounds marked with asterisk. Highest
non-GP values in bold.

WITHIN TRAINING RANGE BEYOND TRAINING RANGE

Matérn- 5
2

Weakly Per. Sawtooth Matérn- 5
2

Weakly Per. Sawtooth
GP (full) 1.22± 6E –3 –0.06± 5E –3 N/A 1.22± 6E –3 –0.06± 5E –3 N/A
ConvNP∗ (LML) –0.58± 0.01 –1.02± 6E –3 2.30± 0.01 –0.58± 0.01 –1.03± 6E –3 2.29± 0.02

ANP∗ (LML) –0.73± 0.01 –1.14± 6E –3 0.09± 3E –3 –1.39± 7E –3 –1.35± 4E –3 –0.17± 1E –3

ANP∗ (LNP) –0.96± 0.01 –1.37± 6E –3 0.20± 9E –3 –1.48± 4E –3 –1.66± 0.01 –0.30± 4E –3

GP (diag) –0.84± 9E –3 –1.17± 5E –3 N/A –0.84± 9E –3 –1.17± 5E –3 N/A
ConvCNP –0.88± 0.01 –1.19± 7E –3 1.15± 0.04 –0.87± 0.01 –1.19± 7E –3 1.11± 0.04

where Z is a normalizing constant (see App F for a full derivation), we see that LNP is equal to
LML up to an additional KL term. This KL term encourages consistency among the qφ(z|D) in
the sense that Bayes’ theorem is respected if the target set is subsumed into the context set. In the
infinite capacity/data limit, LNP is globally maximized if the ConvNP recovers (i) the prediction map
πP for yt and (ii) exact inference for z. This follows from (i) Prop 1, since πP globally optimizes
LML; and (ii) that exact inference for z is Bayes-consistent, sending the KL term to zero. In most
applications, only the distribution over yt is of interest. Given only finite capacity/data, it can be
advantageous to not expend capacity in enforcing Bayes-consistency for z, which suggests it could
be beneficial to use LML over LNP. Further, LML has the advantage of being easy to specify for any
map parameterizing a predictive process, posing no conceptual issues for the ConvNP. In Sec 5 we
find that LML significantly outperforms LNP for ConvNPs, and often also for ANPs.

5 Experiments

We evaluate ConvNPs on a broad range of tasks. Our main questions are: (i) Does the ConvNP
produce coherent, meaningful predictive samples? (ii) Can it leverage translation equivariance to
outperform baseline methods within and beyond the training range (generalization)? (iii) Does it
learn expressive non-Gaussian predictive distributions?

Evaluation and baselines. We use several approaches for evaluating NPs. First, as in [11, 14], we
provide qualitative comparisons of samples. These allow us to see if the models display meaningful
structure, quantify uncertainty, and are able to generalize spatially. Second, NPs lack closed-form
likelihoods, so we evaluate lower bounds on their predictive log-likelihoods via importance sampling
[20]. As these bounds can be quite loose (App G.1), they are primarily useful to show when NPs
outperform baselines with exact likelihoods, such as GPs and ConvCNPs. Finally, in Sec 5.3 we
consider Bayesian optimization to evaluate the usefulness of ConvNPs for downstream tasks. In
Secs 5.1 and 5.2, we compare against the Attentive NP (ANP; [14]), which in prior work is trained
with LNP. The ANP architectures used here are comparable to those in Kim et al. [14], and have a
parameter count comparable to or greater than the ConvNP. Full details provided in the supplement.4

5.1 1D Regression

We train on samples from (i) a Matérn- 5
2 GP, (ii) a weakly periodic GP, and (iii) a non-Gaussian

sawtooth process with random shifts and frequency (see App H for details). Fig 3 shows predictive
samples, where during training the models only observe data within the grey regions (training range).
While samples from the ANP exhibit unnatural “kinks” and do not resemble the underlying process,
the ConvNP produces smooth samples for Matérn– 5

2 and samples exhibiting meaningful structure for
the weakly periodic and sawtooth processes. The ConvNP also generalizes gracefully beyond the
training range, whereas ANP fails catastrophically. The ANP with LNP collapses to deterministic
samples, with the epistemic uncertainty explained using the heteroskedastic noise σ2

y(x, z). This was
also noted in Le et al. [20]. This behaviour is alleviated when training with LML, with much of the
predictive uncertainty due to variations in the sampled functions.

4Code to reproduce the 1D regression experiments can be found at https://github.com/wesselb/
NeuralProcesses.jl, and code to implement the image-completion experiments can be found at https:
//github.com/YannDubs/Neural-Process-Family.
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Figure 3: Predictions of ConvNPs and ANPs trained with LML and LNP, showing interpolation and
extrapolation within (grey background) and outside (white background) the training range. Solid
blue lines are samples, dashed blue lines are means, and the shaded blue area is µ ± 2σ. Purple
dash–dot lines are the ground-truth GP mean and µ± 2σ. ConvNP handles points outside the training
range naturally, whereas this leads to catastrophic failure for the ANP. Note ANP with LNP tends to
collapse to deterministic samples, with all uncertainty explained with the heteroskedastic noise. In
contrast, models trained with LML show diverse samples that account for much of the uncertainty.

Table 2: Test log-likelihood lower bounds for image completion (5 runs).

MNIST CelebA32 SVHN ZSMM
LML LNP LML LNP LML LNP LML LNP

ConvNP 2.11± 0.01 0.99± 0.42 6.92± 0.10 −0.27± 0.00 9.89± 0.09 0.17± 0.00 4.58± 0.04 0.14± 0.00

ANP 1.66± 0.03 1.64± 0.03 5.98± 0.08 6.04± 0.10 9.18± 0.08 8.91± 0.06 −10.8± 1.99 −6.45± 0.99

Tab 1 compares lower bounds on the log-likelihood for ConvNP with our proposed LML objective
and ANP with both LML and the standard LNP objective. We also show three exact log-likelihoods:
(i) the ground-truth GP (full) (ii) the ground-truth GP with diagonalised predictions (diag), and
(iii) ConvCNP. The ConvCNP performs on par with GP (diag), which is the optimal factorized
predictive. The ConvNP lower bound is consistently higher than the GP (diag) and ConvCNP log-
likelihoods, demonstrating that its correlated predictives improve predictive performance. Further,
the ConvNP performs similarly inside and outside its training range, demonstrating that TE helps
generalization; this is in contrast to the ANP, which fails catastrophically outside its training range.
In App I, we provide a thorough comparison for multiple models, training objectives, and data sets.

5.2 Image Completion

We evaluate ConvNPs on image completion tasks focusing on spatial generalization. To test this, we
consider zero-shot multi MNIST (ZSMM), where we train on single MNIST digits but test on two
MNIST digits on a larger canvas. We randomly translate the digits during training, so the generative
SP is stationary. The black background on MNIST causes difficulty with heteroskedastic noise, as the
models can obtain high likelihood by predicting the background with high confidence whilst ignoring
the digits. Hence for MNIST and ZSMM we use homoskedastic noise σ2

y(z). Figs 4a and 4b show
that the ANP fails to generalize spatially, whereas this is naturally handled by the ConvNP.
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(a) ConvNP (b) ANP (c) ConvNP (d) ANP

Figure 4: Left two plots: predictive samples on zero-shot multi MNIST. Right two plots: samples and
marginal predictives on standard MNIST. We plot the density of the five marginals that maximize
Sarle’s bimodality coefficient [9]. We use LML for training. Blue pixels are not in the context set.

Table 3: Joint predictive log-likelihoods (LL) and RMSEs on ERA5-Land, averaged over 1000 tasks.

Central (train) West (test) East (test) South (test)

LL ConvNP 4.47± 0.07 4.55± 0.08 5.07± 0.07 4.65± 0.08

GP 3.33± 0.06 3.65± 0.06 4.07± 0.06 3.34± 0.06

RMSE (×10−2) ConvNP 5.72± 0.33 5.77± 0.37 3.23± 0.22 6.92± 0.39

GP 6.26± 0.30 5.75± 0.29 3.10± 0.18 7.94± 0.44

We also test the ConvNP’s ability to learn non-Gaussian predictive distributions. Fig 4c shows that
the ConvNP can learn highly multimodal predictives, enabling the generation of diverse yet coherent
samples. A quantitative comparison of models using log-likelihood lower bounds is provided in
Tab 2, where ConvNP trained with LML consistently achieves the highest values. App J provides
details regarding the data, architectures, and protocols used in our image experiments. In App K, we
provide samples and further quantitative comparisons of models trained on SVHN [25], MNIST [21],
and 32× 32 CelebA [25] in a range of scenarios, along with full experimental details.

5.3 Environmental Data

We next consider a real-world data set, ERA5-Land [35], containing environmental measurements at
a ∼9 km spacing across the globe. We consider predicting daily precipitation y at position x. We
also provide the model with orography (elevation) and temperature values. We choose a large region
of central Europe as our train set, and use regions east, west and south as held-out test sets. For
such tasks, models must be able to make predictions at locations spanning a range different from the
training set, inhibiting the deployment of NPs not equipped with TE. To sample a task at train time,
we sample a random date between 1981 and 2020, then sample a sub-region within the train region,
which is split into context and target sets. In this section, we train using LML. See App L for details.

(a) Ground truth data (b) ConvNP sample 1 (c) ConvNP sample 2 (d) ConvNP sample 3

(e) Context set (f) GP sample 1 (g) GP sample 2 (h) GP sample 3

Figure 5: Predictive samples overlaid on central Europe. Darker colours show higher precipitation.
In (e), coloured pixels represent context points. GP samples often take negative values (lighter than
ground truth data, see App L.2 for a discussion), whereas the NP has learned to produce non-negative
samples which capture the sparsity of precipitation. The model is trained on subregions roughly the
size of the lengthscale of the precipitation process. More samples in App M.

Prediction. We first evaluate the ConvNP’s predictive performance, comparing to a GP trained
individually on each task as a baseline. In about 10% of tasks, the GP obtains a poor likelihood (< 0
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Figure 6: Average regret plotted against number of points queried, averaged over 5000 tasks.

nats); we remove these outliers from the evaluation. The results are shown in Tab 3. The ConvNP
and GP have comparable RMSEs except on south, where the ConvNP outperforms the GP. However,
the ConvNP consistently outperforms the GP in log-likelihood, which is expected for the following
reasons: (i) the GP does not share information between tasks and hence is prone to overfitting on
small context sets, resulting in overconfident predictions; and (ii) the ConvNP can learn non-Gaussian
predictive densities (illustrated in App M). Fig 5 shows samples from the predictive process of a
ConvNP and GP, over the whole of the train region. This demonstrates spatial extrapolation, as the
ConvNP is trained only on random subregions.

Bayesian optimization. We demonstrate the ConvNP in a downstream task by considering a toy
Bayesian optimisation problem, where the goal is to identify the location with heaviest rainfall on
a given day. We also test the ConvNP’s spatial generalization, by optimising over larger regions
(for central, west, and south) than the model was trained on. We test both Thompson sampling (TS)
[38] and upper confidence bounds (UCB) [1] as methods for acquiring points. Note that TS requires
coherent samples. The results are shown in Fig 6. On all data sets, ConvNP TS and UCB significantly
outperform the random baseline by the 50th iteration; the GP does not reliably outperform random.
We hypothesize this is due to its overconfidence, in line with the results on prediction.

6 Related Work and Discussion

We have introduced the ConvNP, a TE map from observed data sets to predictive SPs. Within the NP
framework, ConvNPs bring together three key considerations.

Expressive joint densities. ConvNPs extend ConvCNPs to allow for expressive joint predictive
densities. A powerful alternative approach is to combine autoregressive (AR) models (such as
PixelCNN++ [33] and the Image Transformer [26]) with CNPs. A difficulty in introducing AR
sampling to CNPs is the need to specify a sampling ordering, which is in tension with permutation
invariance and relates to the discussion on Bayes-consistency (Sec 4.2). Several works have considered
exchangeable NP models [23, 19, 18], providing an avenue for future investigation.

Translation equivariance. There has been much interest in incorporating equivariance with respect
to symmetry groups into neural networks, e.g. [16, 4, 5, 17], with a comprehensive treatment
provided by Bloem-Reddy and Teh [2]. ConvNPs leverage a simple relationship between translation
equivariance and stationarity to construct a model particularly well suited to stationary SPs. Similar
ideas have been explored for 3D point-cloud modelling [27, 28]. For example, the models proposed in
[42, 41] perform convolutions over continuous domains, which are both TE and permutation invariant,
achieving excellent performance in point-cloud classification. In contrast with ConvNPs, point-cloud
models (i) are generally used as classification function approximators, rather than meta or few-shot
learners; (ii) are typically tailored towards point clouds, making heavy use of specific properties for
function design; and (iii) have not considered latent variable or stochastic generalizations.

Neural Process training procedures. One of the key benefits of CNPs is their simple maximum-
likelihood training procedure [10, 13]. In contrast, NPs are usually trained with VI-inspired objectives
[11], variants of which are empirically investigated in Le et al. [20]. We propose an alternative training
procedure that discards VI in favor of a (biased) maximum-likelihood approach that focuses on directly
optimizing predictive performance. In this regard, our work is similar to Gordon et al. [12], albeit in
a very different domain. This approach has two benefits: (i) it does not require carefully designed
inference procedures, and works “out-of-the-box” for a range of models; and (ii) empirically, we find
that it leads to improved performance for ConvNPs and, often, for ANPs.
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Broader Impact

The proposed model and training procedure are geared towards off-the-grid, spatio-temporal ap-
plications. As such, ConvNPs are particularly well-suited for many important applications in the
medical and environmental sciences, such as modelling electronic healthcare records or the temporal
evolution of temperatures. We hope that one impact of ConvNPs is to increase the usability of deep
learning tools in the sciences. Another potential application of ConvNPs is image generation, which
has potentially negative societal impacts. However, ConvNPs focus on predicting distributions over
images, and are far from state-of-the-art in terms of perceptual quality. Thus we believe the societal
impact of ConvNPs via image-generation will be insignificant.
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