
Supplementary Material:
Meta-Learning Stationary Stochastic Process

Prediction with Convolutional Neural Processes

Andrew Y. K. Foong∗
University of Cambridge
ykf21@cam.ac.uk

Wessel P. Bruinsma∗
University of Cambridge

Invenia Labs
wpb23@cam.ac.uk

Jonathan Gordon∗
University of Cambridge
jg801@cam.ac.uk

Yann Dubois
Facebook AI Research

yannd@fb.com

James Requeima
University of Cambridge

Invenia Labs
jrr41@cam.ac.uk

Richard E. Turner
University of Cambridge

Microsoft Research
ret26@cam.ac.uk

A Formal Definitions and Set-up

Notation. We first review the notation introduced in the main body for convenience. Let X = Rdin
and Y = R denote the input and output spaces respectively, and let (x, y) denote a generic input-
output pair (higher-dimensional outputs can be treated easily). Define SN = (X × Y)N to be the
collection of all data sets of size N , and let S :=

⋃∞
N=1 SN . Let Dc, Dt ∈ S denote a context and

target set respectively. Later, as is common in recent meta-learning approaches, we will consider
predicting the target set from the context set Garnelo et al. [3, 4]. LetXc = (x1, . . . ,xNc

) denote a
matrix of context set inputs, with yc = (y1, . . . , yNc

) the corresponding outputs;Xt,yt are defined
analogously. We denote a single task as ξ = (Dc, Dt) = (Dc, (Xt,yt)).

Stochastic processes. For our purposes, a stochastic process on X will be defined2 as a probability
measure on the set of functions from X → R, i.e. RX , equipped with the product σ-algebra of the
Borel σ-algebra over each index point [16], denoted Σ. The measurable sets of Σ are those which can
be specified by the values of the function at a countable subset I ⊂ X of its input locations. Since in
practice we only ever observe data at a finite number of points, this is sufficient for our purposes. We
denote the set of all such measures as P(X). We model the world as having a ground truth stochastic
process P ∈ P(X). Consider a Kolmogorov-consistent (i.e. consistent under marginalization)
collection of distributions on finite index sets I ⊂ X . By the Kolmogorov extension theorem, there
exists a unique measure on (RX ,Σ) that has these distributions as its finite marginals. Hence we may
think of these stochastic processes as defined by their finite-dimensional marginals.

Conditioning on observations. We now define what it means to condition on observations of the
stochastic process P . Let p(y|X) denote the density with respect to Lebesgue measure of the finite
marginal of P with index setX (we assume these densities always exist). Assume we have observed
P at a finite number of points (Xc,yc), with p(yc|Xc) > 0. LetXt be another finite index set. Then
we define the finite marginal atXt conditioned on Dc as the distribution with density

p(yt|Xt, Dc) =
p(yt,yc|Xt,Xc)

p(yc|Xc)
. (1)

It can easily be verified that for a fixed Dc, the conditional marginal distributions for different Xt

in Eq (1) are Kolmogorov-consistent. Again, the Kolmogorov extension theorem implies there is a
∗Authors contributed equally.
2Strictly speaking, this is non-standard terminology, since P is the law of a stochastic process.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

unique measure PDc on (RX ,Σ) that has Eq (1) as its finite marginals. We now define πP : S →
P(X), πP : Dc 7→ PDc as the prediction map, so called because it maps each observed dataset Dc to
the exact predictive stochastic process conditioned on Dc. The meta-learning task may be viewed as
learning an approximation to the prediction map.

B Stationary Processes and Translation Equivariance

Def 1 (Translating data sets and SPs). We define the action of the translation operator Tτ on data
sets and SPs, where τ ∈ X denotes the shift vector of the translation.3

1. Let (xn,yn)Nn=1 = S ∈ S. For the index setX = (x1, . . . ,xn), the translation by τ is defined
as TτX = (x1 + τ , . . . ,xn + τ). Similarly, TτS := (xn + τ ,yn)Nn=1.

2. For a function f ∈ RX , define Tτf(x) := f(x− τ) for all x ∈ X . Let F ∈ Σ be a measurable
set of functions. Then TτF := {Tτf : f ∈ F}.

3. For any SP P ∈ P(X), we now define TτP by setting4 TτP (F) := P (T−τF) for all F ∈ Σ.

Def 2 (Stationary SP). We say a stochastic process is (strictly) stationary if the densities of its finite
marginals satisfy

p(yt|Xt) = p(yt|TτXt) (2)

for all yt,Xt and τ .

Def 3 (Translation equivariant prediction maps). We say that Ψ: S → P(X) is translation equivari-
ant if Ψ(TτS) = TτΨ(S) for any data set S ∈ S and shift τ ∈ X .

The following simple statement highlights the link between stationarity and translation equivariance:

Prop 1. Let P be a stationary SP. Then the prediction map πP is translation equivariant.5

Proof. Let p(yt|Xt, Dc) denote the finite dimensional density of πP (Dc) at index setXt. To show
that πP (TτDc) = TτπP (Dc) it suffices to show that p(yt|Xt, TτDc) = p(yt|T−τXt, Dc). We
have

p(yt|Xt, TτDc) =
p(yt,yc|Xt, TτXc)

p(yc|TτXc)

=
p(yt,yc|T−τXt,Xc)

p(yc|Xc)

= p(yt|T−τXt, Dc),

where we used the stationarity assumption in the second line.

C Description and Pseudocode for ConvCNP and ConvNP

We provide additional details and pseudo-code for ConvCNP and ConvNP. Similar to Gordon et al.
[5], we distinguish between the “on-the-grid” and “off-the-grid” versions of the model. In our
experiments, we use the “off-the-grid” version of the model for the 1d experiments in Sec 5.1, and
the “on-the-grid” version for the image and environmental experiments in Secs 5.2 and 5.3.

C.1 ConvCNP Pseudo-Code and Details

Off-the-grid ConvCNP. We begin by providing details for off-the-grid ConvCNP. As detailed in
the main text, the encoder Eφ is defined by a ConvCNP, which provides a distribution over latent
functions z. In practice, we consider the discretized version, where we denote the grid of discretization
locations as (ti)

K
i=1, with ti ∈ X . Let pφ(zi|ti, Dc) denote the density of the latent function at the

3To prevent notational clutter, the same symbol, Tτ , will denote translations on multiple kinds of objects.
4This is well-defined since Σ is closed under translations. Equivalently, we could define TτP as the

push-forward of P under the the translation map on functions, Tτ : RX → RX .
5We exclude conditioning on observations that have zero density, so that the prediction map is well defined.

2

Algorithm 1 Forward pass through ConvCNP (off-the-grid)

Require: ρ = (CNN, ψρ), ψ, and density ζ
Require: context (xn, yn)Nn=1, target (x∗m)Mm=1

1: lower, upper← range
(
(xn)Nn=1∪(x∗m)Mm=1

)
2: (ti)

K
i=1 ← uniform_grid(lower, upper; γ)

3: hi ←
∑N
n=1 [1 yn]

>
ψ(ti − xn)

4: h(1)
i ← h

(1)
i /h

(0)
i

5: (fµ(ti), fσ(ti))
T
i=1 ← CNN((ti,hi)

T
i=1)

6: µm ←
∑K
i=1 fµ(ti)ψρ(x

∗
m − ti)

7: σm ←
∑K
i=1 pos(fσ(ti))ψρ(x

∗
m − ti)

8: return (µm,σm)Mm=1

ith position, i.e. at zi = z(ti). Then in order to sample z ∼ Eφ (as in e.g. Eq (2) in the main body)
we specify the density of the entire discretized latent function z as:

pφ(z|Dc) =

K∏
i=1

pφ(zi|ti, Dc) =

K∏
i=1

N (zi;µ(ti, Dc), σ
2(ti, Dc)), (3)

where µ and σ2 are parametrized by ConvDeepSets [5].

ConvDeepSets can be expressed as the composition of two functions. Let Φ = ρ◦γ be a ConvDeepSet.
γ maps a data set D to its functional representation via

γ(D) =
∑

(x,y)∈D

φ(y)ψ(· − x).

Following Gordon et al. [5], we set φ(y) = [1, y]T ∈ R2, and ψ to be a radial basis function. γ(D) is
itself discretized by evaluating it on a grid (which for simplicity we can also take to be (ti)

K
i=1).

Next, ρ maps the discretized γ(D) to a continuous function, which we denote f = ρ(γ(D)). γ is
itself implemented in two stages. First a deep CNN maps the discretized γ(D) to a discretized output.
Second, this discrete output is mapped to a continuous function by using the CNN outputs as weights
for evenly-spaced basis functions (again employing radial basis functions), which we denote by ψρ.

Whenever models output standard deviations, we enforce positivity via a function (e.g. the soft-plus
function), which we denote pos(·). Pseudo-code for a forward pass through an off-the-grid ConvCNP
is provided in Algorithm 1. Note the forward pass involves the computation of a density channel
h(0), whose role intuitively is to allow the model to know where it has observed datapoints. This is
discussed further in Gordon et al. [5].

On-the-grid ConvCNP. Next, we describe the ConvCNP for on-the-grid data, which is used in our
image and environmental experiments. This version is simpler to implement in practice, and is
applicable whenever the input data is confined to a regular grid. As in Gordon et al. [5] we choose
the discretization (ti)

K
i=1 to be the pixel locations.

Let I ∈ RH×W×C be an image of dimensions H,W,C (height, width, and channels, respectively).
We define a mask Mc, which is such that [Mc]i,j = 1 if pixel location (i, j) is in the context set, and 0
otherwise. Masking an image is then achieved via element-wise multiplication, denoted Mc � I. This
allows us to flexibly define context and target sets for an image (target sets are typically considered as
the complete image, so the masks Mc are simply binary-valued tensors with the same dimensions
as the image). In this setting, we implement φ, by selecting the context points, and prepend the
context mask: φ = [Mc,Zc]

>. We then implement γ by a simple convolutional layer, which we
denote CONVθ to emphasize that we use a standard 2d convolutional layer. Full pseudo-code for the
on-the-grid ConvCNP is provided in Algorithm 2.

C.2 Pseudo-Code for the ConvNP

The ConvNP can be implemented very simply by passing samples from the ConvCNP through
an additional CNN decoder, which we denote dθ. For an “off-the-grid” ConvNP, similarly to the

3

Algorithm 2 ConvCNP Forward pass (on-the-grid)

Require: ρ = (CNN, ψρ) and CONVθ
Require: image I, context Mc, and target mask Mt

1: We discretize at the pixel locations.
2: Ic ← Mc � I
3: h← CONVθ([Mc, Ic]

>)
4: h(1:C) ← h(1:C)/h(0)

5: ft ← Mt � CNN(h)

6: µ← f
(1:C)
t

7: σ ← pos(f (C+1:2C)
t)

8: return (µ,σ)

Algorithm 3 Forward pass through ConvNP (off-the-grid)

Require: d = (CNN, ψd), Eφ (off-the-grid ConvCNP), and number of samples L
Require: context (xn, yn)Nn=1, target (x∗m)Mm=1

1: µz,σz ← Eφ(Dc)
2: for l = 1, . . . , L do
3: zl ∼ N (z;µz,σ

2
z)

4: (fµ(ti), fσ(ti))
K
i=1 ← CNN(zl)

5: µm,l ←
∑T
i=1 fµ(ti)ψd(x

∗
m − ti)

6: σm,l ← pos (fσ(ti))
7: end for
8: return (µ,σ)

ConvCNP, we must map the output of a standard CNN back to functions on a continuous domain X .
This can be achieved via an RBF mapping, similar to the off-the-grid ConvCNP, e.g. Algorithm 1
lines 6, 7. Pseudo-code for off- and on-the-grid ConvNPs are provided in Algorithms 3 and 4,
respectively. Note that for the ConvNP, the discretization of the latent function z is typically on
a pre-specified grid, and therefore lines 6 and 7 of Algorithm 1 are unnecessary when calling the
ConvCNP (Algorithm 3, line 1).

D Translation Equivariance of the ConvNP

We prove that the ConvNP is a translation equivariant map from data sets to stochastic processes,
by proving that the decoder and encoder are separately translation equivariant. In this section we
suppress the dependence on parameters (φ,θ).

Lem 1. Let d be a measurable, translation equivariant map from (RX ,Σ) to (RX ,Σ). The ConvNP
decoder D : P(X)→ P(X), defined by D(P) = d∗(P), where d∗(P) is the pushforward measure
under d, is translation equivariant.

Proof. Let F ∈ Σ be measurable. Then:

D(TτP)(F)
(a)
= TτP (d−1(F))

= P (T−τd
−1(F))

(b)
= P (d−1(T−τF))

= D(P)(T−τF)

= TτD(P)(F).

4

Algorithm 4 Forward pass through ConvNP (on-the-grid)

Require: d = CNN, Eφ (on-the-grid ConvCNP), and number of samples L
Require: image I, context mask Mc, and target mask Mt

1: µz,σz ← Eφ(I,Mc)
2: for l = 1, . . . , L do
3: zl ∼ N (z;µz,σ

2
z)

4: (fµ(ti), fσ(ti))
K
i=1 ← CNN(zl)

5: µ← f
(1:C)
t

6: σ ← pos
(
f

(C+1:2C)
t

)
7: end for
8: return (µ,σ)

Here (a) follows from definition of the pushforward, and (b) follows because

T−τd
−1(F) = T−τ{f : d(f) ∈ F}

= {T−τf : d(f) ∈ F}
= {f : d(Tτf) ∈ F}
= {f : Tτd(f) ∈ F}
= {f : d(f) ∈ T−τF}
= d−1(T−τF).

Lem 2. The ConvNP encoder E (a ConvCNP), is a translation equivariant map from data sets to
stochastic processes.

Proof. Recall that the mean and variance µ(·, S), σ2(·, S) (viewed as maps from S → Cb(X)) of the
encoder E are both given by ConvDeepSets. Due to the translation equivariance of ConvDeepSets
[5, Theorem 1], µ(·, TτS) = Tτµ(·, S) for all S, τ , and similarly for σ2. Let F ∈ Σ. Then since
the measure E(S) ∈ PN(X) is defined entirely by its mean and variance function, E(TτS)(F) =
E(S)(T−τF) = TτE(S)(F).

Noting that a composition of translation equivariant maps is itself translation equivariant, we obtain
the following proposition:

Prop 2. Define ConvNP = D ◦ E. Then ConvNP is a translation equivariant map from data sets to
stochastic processes.

E Recovering the Prediction Map in the Infinite Data / Capacity Limits

Task generation procedure. Assume tasks ξ = (Dc, Dt) are generated as follows: first, some
finite number of input locations Xt,Xc are sampled. Assume that Pr(|Xt| = n) > 0 for all
n ∈ Z≥0, where |Xt| denotes the number of datapoints in Xt, and assume the same is true of
Pr(|Xc| = n). Further assume that for each n > 0, the distribution of X given |X| = n has a
continuous density with support over all of Rn×din . Next, we sample yt,yc from the finite marginal
of the ground truth stochastic process P , which has density p(yt,yc|Xt,Xc). Finally, we set
(Dc, Dt) := ((Xt,yt), (Xc,yc)).

Prop 3. Let Ψ : S → P(X) be any map from data sets to stochastic processes, and let LML(Ψ) :=
Ep(ξ)[log pΨ(yt|Xt, Dc)], where the density pΨ is that of Ψ(Dc) evaluated atXt. Then Ψ globally
maximises LML if and only if Ψ = πP , the prediction map.

5

Proof. We have:

LML(Ψ) = Ep(Dc,Xt,yt) [log pΨ(yt|Xt, Dc)] (4)

= Ep(Dc,Xt)

[
Ep(yt|Xt,Dc) [log pΨ(yt|Xt, Dc)]

]
(5)

= −Ep(Dc,Xt) [KL (p(yt|Xt, Dc)‖pΨ(yt|Xt, Dc))] + constant, (6)

where the additive constant is constant with respect to Ψ. First note that the KL-divergence is
non-negative, and that the prediction map sends all the KL-divergences to zero, globally optimising
L(Ψ). Furthermore, the KL-divergence is equal to zero if and only if the two distributions are equal,
and this must hold for allXt, Dc. For, if this were not the case, the KL-divergence would contribute
a non-zero amount to the expectation in Eq (6).

Strictly speaking, this argument only shows that the finite marginals of the prediction map and Ψ
must be equal for almost all (Dc,Xt) with respect to p(Dc,Xt). Since the task generation procedure
outlined in this section assumes a finite probability of generating any finite-sized context and target
set, this is not very restrictive. However, in practice we often limit the maximum size of the sampled
data sets, and also their range in X space. Hence we can only expect the model to learn reasonable
predictions within the ranges seen during train time.

F Relationship Between Neural Process and Maximum-Likelihood
Objectives

Let D := Dt ∪Dc, and let Z =
∫
pθ(yt|Xt, z)qφ(z|Dc) dz. The NP objective is:

LNP(θ,φ; ξ) := Eqφ(z|D)[log pθ(yt|Xt, z)]−KL(qφ(z|D)‖qφ(z|Dc)) (7)

= Eqφ(z|D)[log pθ(yt|Xt, z) + log qφ(z|Dc)− log qφ(z|D)] (8)

= Eqφ(z|D)

[
logZ + log

pθ(yt|Xt, z)qφ(z|Dc)

Z
− log qφ(z|D)

]
(9)

= logZ −KL

(
qφ(z|D)

∥∥∥∥ 1

Z
pθ(yt|Xt, z)q(z|Dc)

)
. (10)

If we identify the approximate posterior qφ with the encoder of the maximum-likelihood ConvNP,
(which in the maximum-likelihood framework does not have an approximate inference interpretation),
then logZ = LML(θ,φ; ξ).

G Effect of Number of Samples Used to Estimate Objective During Training
and Evaluation

In this section we empirically examine the effect of L, the number of samples used to estimate
likelihood bounds, on the training and evaluation of ConvNPs and ANPs.

G.1 Effect of Number of Samples Used for Evaluation

As the true log-likelihoods of NP-based models are intractable, quantitative evaluation and comparison
of models is challenging. Instead, we compare models by using an estimate of the log-likelihood.
A natural candidate is LML. However, unless large L is used, LML is conservative and tends to
significantly underestimate the log-likelihood. One way to improve the estimate of LML is through
importance weighting (IW) [18, 11]. Denoting D = Dc ∪Dt, the encoder Eφ(D) can be used as a
proposal distribution:

L̂IW(θ,φ; ξ) := log

 1

L

L∑
l=1

exp

logw(zl) +
∑

(x,y)∈Dt

log pθ(y|x, zl)

 , zl ∼ Eφ(D),

(11)
where the importance weights are given by logw(zl) := log qφ(z|Dc)− log qφ(z|D). Here qφ(z|D)
is the density of the encoder distribution. We find that training models with LML results in encoders
that are ill-suited as proposal distributions, so we only use LIW to evaluate models trained with LNP.

6

1.3

1.2

1.1

1.0

0.9

0.8

0.7

0.6

ConvNP (LML)
ConvNP (LNP + IW)
ANP (LML)
ANP (LNP + IW)
ANP (LNP)

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384
Number of samples L in evaluation loss

15
10

5

ConvNP (LNP)

(a) Matérn– 5
2

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384
Number of samples L in evaluation loss

2.0

1.8

1.6

1.4

1.2

1.0

ConvNP (LML)
ConvNP (LNP + IW)
ConvNP (LNP)
ANP (LML)
ANP (LNP + IW)
ANP (LNP)

(b) Weakly periodic kernel

Figure 1: Log-likelihood bounds achieved by various combination of models and training objectives
when evaluated with LML and LIW for various numbers of samples L. Color indicates model. Solid
lines correspond to models trained and evaluated with LML. Dashed lines correspond to models
trained with LNP and evaluated with LIW. Dotted lines correspond to models trained with LML and
evaluated with LML.

Fig 1 demonstrates the effect of the number of samples L used to estimate the evaluation objective
for the ConvNP and ANP trained with LML and LNP. The models used to generate Fig 1 are the
same models used in Sec 5.1, i.e. having heteroskedastic noise. Observe the general trend that the
log-likelihood estimates tend to increase with L, as expected. The ANP trained with LNP collapsed
to a conditional ANP, meaning that the encoder became deterministic; in that case, LML is exact,
which means that larger L and importance weighting will not increase the estimate. In contrast, the
ANP trained with LML did not collapse, and we see that there the estimate increases with L. For the
ConvNP trained with LNP, evaluating with LIW yields a significant increase, showing that the bound
estimated with LIW is very loose. The models trained with LML tend to be the best performing,
although the ConvNP trained with LNP is best for weakly periodic kernel and appears to still be
increasing with L.

In both the main and the supplement, all log-likelihood lower bounds reported are computed with
LML if the model was trained using LML and with LIW if the model was trained using LNP.

G.2 Effect of Number of Samples Used During Training

Fig 2 shows the effect of the number of samples L in the training objectives on the performance of
the ConvNP and ANP. Observe that the performance of LML reliably increases with the number of
samples L and that LML outperforms LNP. The performance for LNP does not appear to increase
with the number of samples L and appears more noisy than LML. Note that the models used for Fig 2

7

Figure 2: Interpolation performance (within training range) for context set sizes uniformly sampled
from {0, . . . , 50} of the ConvNP and ANP on Matérn– 5

2 samples. The models are trained with LML

and LNP for various number of samples L. Models trained with LML are evaluated with LML, while
models trained with LNP are evaluated with LML. At evaluation, all bounds are estimated using
2,048 samples.

were trained with homoskedastic observation noise. This is achieved by pooling fσ over the time
dimension.

H Experimental Details on 1D Regression

For the full results of the 1D regression tasks, see App I. Code to reproduce the 1D regression
experiments can be found at https://github.com/wesselb/NeuralProcesses.jl.

In the 1D regression experiments, we consider the following generative processes:

EQ: samples from a Gaussian process with the following exponentiated-quadratic
kernel:

k(t, t′) = exp

(
−1

8
(t− t′)2

)
;

Matérn– 5
2 : samples from a Gaussian process with the following Matérn– 5

2 kernel:

k(t, t′) =

(
1 + 4

√
5d+

5

3
d2

)
exp

(
−
√

5d

)
with d = 4|x− x′|;

noisy mixture: samples from a Gaussian process with the following noisy mixture kernel:

k(t, t′) = exp

(
−1

8
(t− t′)2

)
+ exp

(
−1

2
(t− t′)2

)
+ 10−3δ[t− t′];

weakly periodic: samples from a Gaussian process with the following weakly-periodic kernel:

k(t, t′) = exp

(
−1

2
(f1(t)− f1(t′))2 − 1

2
(f2(t)− f2(t′))2 − 1

8
(t− t′)2

)
with f1(t) = cos(8πt) and f2(t) = sin(8πt); and

sawtooth: samples from the following sawtooth process:

f(t) =
A

2
− A

π

K∑
k=1

(−1)k
sin(2πkf(t− s))

k

8

https://github.com/wesselb/NeuralProcesses.jl

with A = 1, f ∼ U [3, 5], s ∼ U [−5, 5], and K ∈ {10, . . . , 20} chosen uni-
formly.

We compare the following models, where all activation functions are leaky ReLUs with leak 0.1:

ConvCNP: The first model is the ConvCNP. The architecture of the ConvCNP is equal to
that of the encoder in the ConvNP, described next.

ConvNP: The second model is the ConvNP as described in the main body. The functional
embedding uses separate length scales for the data channel and density channel
(??), which are initialized to twice the inter-point spacing of the discretization
and learned during training. The discretization uniformly ranges over [min(x)−
1,max(x) + 1] at density ρ = 64 points per unit, where min(x) is the minimum
x value occurring in the union of the context and target sets in the current batch
and max(x) is corresponding maximum x value. The discretization is passed
through a 10-layer (excluding an initial and final point-wise linear layer) CNN
with 64 channels and depthwise-separable convolutions. The width of the filters
depends on the data set and is chosen such that the receptive field sizes are as
follows:

EQ: 2,
Matérn– 5

2 : 2,
noisy mixture: 4,

weakly periodic: 4,
sawtooth: 16.

The discretized functional representation consists of 16 channels. The smoothing
at the end of the encoder also has separate length scales for the mean and variance
which are initialized similarly and learned. The encoder parametrizes the standard
deviations by passing the output of the CNN through a softplus. The decoder has
the same architecture as the encoder.

ANP: The third model is the Attentive NP with latent dimensionality d = 128 and
8-head dot-product attention [17]. In the attentive deterministic encoder, the
keys (t), queries (t), and values (concatenation of t and y) are transformed by
a three-layer MLP of constant width d. The dot products are normalised by√
d. The output of the attention mechanism is passed through a constant-width

linear layer, which is then passed through two layers of layer normalization
[1] to normalise the latent representation. In the first of these two layers, first
the transformed queries are passed through a constant-width linear layer and
added to the input. In the second of these two layers, the output of the first
layer is first passed through a two-layer constant-width MLP and added to itself,
making a residual layer. In the stochastic encoder, the inputs and outputs are
concatenated and passed though a three-layer MLP of constant width d. The
result is mean-pooled and passed through a two-layer constant-width MLP. The
decoder consists of a three-layer MLP of constant width d.

NP: The fourth model is the original NP [4]. The architecture is similar to that of the
ANP, where the architecture of the deterministic encoder is replaced by that of
the stochastic encoder.

For all models, positivity of the observation noise is enforced with a softplus function. Parameter
counts of the ConvCNP, ConvNP, ANP, and NP are listed in Tab 1.

The models are trained with LML (L = 20) and LNP (L = 5). For LNP, the context set is appended
to the target set when evaluating the objective. The models are optimised using ADAM with learning
rate 5 · 10−3 for 100 epochs. One epoch consists of 214 tasks divided into batches of size 16. For
training, the inputs of the context and target sets are sampled uniformly from [−2, 2]. The size
of the context set is sampled uniformly from {0, . . . , 50} and the size of the target set is fixed to
50. To encourage the NP-based models—not the CNP-based models—to fit and not revert to their
conditional variants, the observation noise standard deviation σ is held fixed to 10−2 for the first 20
epochs.

9

EQ Matérn– 5
2 Noisy Mixt. Weakly Per. Sawtooth

ConvCNP 42 822 42 822 51 014 51 014 100 166
ConvNP 88 486 88 486 104 870 104 870 203 174

ANP 530 178 530 178 530 178 530 178 530 178
NP 479 874 479 874 479 874 479 874 479 874

Table 1: Parameter counts for the ConvCNP, ConvNP, ANP, and NP in the 1D regression tasks

For evaluation, the size of the context set is sampled uniformly from {0, . . . , 10}, and the losses
are evaluated with L = 5000 and batch size one. To test interpolation within the training range,
the inputs of the context and target sets are, like training, sampled uniformly from [−2, 2]. To test
interpolation beyond the training range, the inputs of the context and target sets are sampled uniformly
from [2, 6]. To test extrapolation beyond the training range, the inputs of the context sets are sampled
uniformly from [−2, 2] and the inputs of the target sets are sampled uniformly from [−4,−2] ∪ [2, 4].
As described in App G.1, models trained with LNP are evaluated using importance weighting to
obtain a better estimate of the evaluation loss.

I Additional Results on 1D Regression

Tab 2 presents results for all models with all losses on all data sets described in App H according to
the evaluation protocol described in Apps G.1 and H.

J Experimental Details on Image Completion

J.1 Data Details

(a) Train (32× 32) (b) Test (56× 56)

Figure 3: Samples from our generated Zero Shot Multi MNIST (ZSMM) data set.

We use three standard data sets throughout our image experiments: SVHN [13], MNIST [12], and
32× 32 CelebA [13]. The aforementioned standard data sets all contain only a single, well-centered
object. To evaluate the translation equivariance and generalization capabilities of our model we
evaluate on a Zero Shot Multi-MNIST (ZSMM) task, which is similar to ZSMM described in
Appendix D.2 of [5]. Namely, we generate a test set by randomly sampling with replacement 10000
pairs of digits from the MNIST test set, place them on a black 56× 56 background, and translate the
digits in such a way that the digits can be arbitrarily close but cannot overlap (Fig 3b). The difference
with the dataset from Gordon et al. [5], is that the training set consists of the standard MNIST digits
(instead of a single digit placed in the center of 56× 56 canvas), augmented by up to 4 pixel shifts
(Fig 3a). The model thus has to generalize both to a larger canvas size as well as to seeing multiple
digits.

10

Table 2: Log-likelihood for ConvCNP, ConvNP, ANP, and NP. Each of the stochastic models was
trained on each data set with LML and LNP, separately.

EQ Matérn– 5
2

Noisy Mixt. Weakly Per. Sawtooth

INTERPOLATION INSIDE TRAINING RANGE

GP (full) 5.80± 0.02 1.22± 6.3E –3 1.00± 4.1E –3 –0.06± 4.6E –3 N/A
GP (diag) –0.59± 0.01 –0.84± 9.0E –3 –0.89± 0.01 –1.17± 5.2E –3 N/A
ConvCNP –0.70± 0.02 –0.88± 0.01 –0.92± 0.02 –1.19± 7.0E –3 1.15± 0.04

ConvNP LML –0.30± 0.02 –0.58± 0.01 –0.55± 0.01 –1.02± 6.0E –3 2.30± 0.01

ANP LML –0.52± 0.01 –0.73± 0.01 –0.69± 0.01 –1.14± 6.0E –3 0.09± 3.0E –3

NP LML –0.84± 9.0E –3 –0.96± 7.0E –3 –0.93± 9.0E –3 –1.23± 5.0E –3 –0.02± 2.0E –3

ConvNP LNP –0.50± 0.02 –0.77± 0.01 –0.48± 0.02 –1.03± 8.0E –3 2.47± 8.0E –3

ANP LNP –0.82± 0.01 –0.96± 0.01 –1.04± 0.01 –1.37± 6.0E –3 0.20± 9.0E –3

NP LNP –0.58± 9.0E –3 –1.00± 9.0E –3 –0.72± 0.01 –1.22± 5.0E –3 –0.16± 2.0E –3

INTERPOLATION BEYOND TRAINING RANGE

GP (full) 5.80± 0.02 1.22± 6.3E –3 1.00± 4.1E –3 –0.06± 4.6E –3 N/A
GP (diag) –0.59± 0.01 –0.84± 9.0E –3 –0.89± 0.01 –1.17± 5.2E –3 N/A
ConvCNP –0.69± 0.02 –0.87± 0.01 –0.94± 0.02 –1.19± 7.0E –3 1.11± 0.04

ConvNP LML –0.30± 0.02 –0.58± 0.01 –0.56± 0.01 –1.03± 6.0E –3 2.29± 0.02

ANP LML –1.35± 6.0E –3 –1.39± 7.0E –3 –1.65± 5.0E –3 –1.35± 4.0E –3 –0.17± 1.0E –3

NP LML –2.70± 3.0E –3 –2.60± 3.0E –3 –2.82± 3.0E –3 - –0.03± 2.0E –3

ConvNP LNP –0.48± 0.02 –0.79± 0.01 –0.48± 0.02 –1.04± 8.0E –3 2.47± 8.0E –3

ANP LNP –1.91± 0.03 –1.48± 4.0E –3 –1.85± 7.0E –3 –1.66± 0.01 –0.30± 4.0E –3

NP LNP –13.7± 0.82 –3.96± 0.04 –3.80± 0.02 - –4.98± 0.02

EXTRAPOLATION BEYOND TRAINING RANGE

GP (full) 4.29± 6.2E –3 0.82± 4.3E –3 0.66± 2.2E –3 –0.33± 3.4E –3 N/A
GP (diag) –1.40± 5.0E –3 –1.41± 4.8E –3 –1.72± 6.2E –3 –1.40± 4.0E –3 N/A
ConvCNP –1.41± 6.0E –3 –1.41± 7.0E –3 –1.73± 8.0E –3 –1.41± 6.0E –3 0.27± 0.02

ConvNP LML –1.09± 5.0E –3 –1.11± 5.0E –3 –1.30± 4.0E –3 –1.24± 4.0E –3 1.61± 0.02

ANP LML –1.29± 6.0E –3 –1.29± 5.0E –3 –1.55± 5.0E –3 –1.34± 5.0E –3 –0.25± 2.0E –3

NP LML –2.23± 4.0E –3 –2.08± 3.0E –3 –2.50± 4.0E –3 –1.39± 4.0E –3 –0.06± 2.0E –3

ConvNP LNP –1.21± 0.01 –1.31± 0.01 –1.19± 0.01 –1.51± 8.0E –3 2.10± 7.0E –3

ANP LNP –1.44± 6.0E –3 –1.45± 6.0E –3 –1.77± 7.0E –3 –1.46± 6.0E –3 –0.20± 2.0E –3

NP LNP –5.85± 0.05 –2.65± 3.0E –3 –4.06± 0.04 –1.49± 5.0E –3 –1.99± 6.0E –3

For all data sets, pixel values are divided by 255 to rescale them to the [0, 1] range. We evaluate on
predefined test splits when available (MNIST, SVHN, ZSMM) and make our own test set for CelebA
by randomly selecting 10% of the data. For each dataset we also set aside 10% of the training set as
validation.

J.2 Training Details

In all experiments, we sample the number of context pixels uniformly from U(0, ntotal
2), and the

number of target points is set to ntotal. The weights are optimized using Adam [9] with learning rate
5× 10−4. We use a maximum of 100 epochs, with early stopping — based on log likelihood on the
validation set — of 10 epochs patience. Unless stated otherwise, we use L = 16 samples from the
latent function during training, and L = 128 at test time. We clip the L2 norm of all gradients to 1,
which was particularly important for ConvNP. We use a batch size of 32 for all models besides ANP
trained on ZSMM which used a batch size of 8 due to memory constraints.

J.3 Architecture Details

General architecture details. For all models, we follow Le et al. [11] and process the predicted
standard deviation of the latent function σz using a sigmoid and the standard deviation σ of the

11

predictive distribution using lower-bounded softplus:

σz = 0.001 + (1− 0.001)
1

1 + exp(fσ,z)
(12)

σ = 0.001 + (1− 0.001) ln(1 + exp(fσ)) (13)

As the pixels are rescaled to [0, 1], we also process the mean of the posterior predictive (conditioned
on a single sample) to be in [0, 1] using a logistic function

µ =
1

1 + exp(−fµ)
(14)

In the following, we describe the architecture of ANP and ConvNP. Unless stated otherwise, all
vectors in the following paragraphs are in R128 and all MLPs have 128 hidden units.

ANP details. We provide details for the ANP trained withLML. As the ANP cannot take advantage of
the fact that images are on the grid, we preprocess each pixel so that x ∈ [−1, 1]2. The only exception
being for the test set of ZSMM, where x ∈ [− 56

32 ,
56
32]2 as the model is trained on 32×32 but evaluated

on 56× 56 images. Each context feature is first encoded x(c) 7→ r
(c)
x by a single hidden layer MLP,

while a second single hidden layer MLP encodes values y(c) 7→ r
(c)
y . We produce a representation

r
(c)
xy by summing both representations r(c)

x + r
(c)
y and passing them through two self-attention layers

[17]. Following Parmar et al. [14], each self-attention layer is implemented as 8-headed attention, a
skip connection, and two layer normalizations [1]. To predict values at each target point t, we embed
x(t) 7→ r

(t)
x using the hidden layer MLP used for r(c)

x . A deterministic target representation r
(t)
xy is

then computed by applying cross-attention (using an 8-headed attention described above) with keys
K := {r(c)

x }Cc=1, values V := {r(c)
xy }Cc=1, and query q := r

(t)
x . For the latent path, we average over

context representations r(c)
xy , and pass the resulting representation through a single hidden layer MLP

that outputs (µz,σz) ∈ R256. σz is made positive by post-processing it using Eq (12). We then
sample (with reparametrization [10]) L latent representation zl ∼ N (z;µz,σ

2
z).

We describe the remainder of the forward pass for a single zl, though in practice multiple samples
may be processed in parallel. The deterministic and latent representations of the context set are
concatenated, and the resulting representation is passed through a linear layer [r

(t)
xy ; zl] → r

(t)
xyz ∈

R128. Given the target and context-set representations, the predictive posterior is given by a Gaussian
pdf with diagonal covariance parametrised by (µ(t),σ

(t)
pre) = decoder([r

(t)
x ; r

(t)
xyz]) whereµ(t),σ

(t)
pre ∈

R3 and decoder is a 4 hidden layer MLP. Finally, the σ(t) is processed by Eq (13) using Eq (14).
In the case of MNIST and ZSMM, σ(t) is also spatially mean pooled, which corresponds to using
homoskedastic noise. This improves the qualitative performance by forcing ANP and ConvNP to
model the digit instead of focusing on predicting the black background with high confidence. Kim
et al. [8] did not suffer from that issue as they used a much larger lower bound for Eq (13).

ConvNP details. The core algorithm of on-the-grid ConvNP is outlined in Algorithm 4 as well
as Algorithm 2. Here we discuss the parametrizations used for each step of the algorithm. All
convolutional layers are depthwise separable [2]. CONVθ is a convolutional layer with kernel size of
11 (no bias). Following Gordon et al. [5], we enforce positivity on the weights in the first convolutional
layer by only convolving their absolute value with the signal.

The CNNs are ResNets [6] with 9 blocks, where each convolution has a kernel size of 3. Each
residual block consists of two convolutional layers, pre-activation batch normalization layers [7], and
ReLU activations. The output of the pre-latent CNN (CNN in Algorithm 2) goes through a single
hidden layer MLP that outputs (µz,σz) ∈ R256. As with ANP, fσ,z is processed by Eq (12) and then
used to sample (with reparametrization [10]) L latent functions Zl. Importantly, we found that the
coherence of samples improves if the model uses a global representation in addition to the the pixel
dependent representation. We achieve this by mean-pooling half of the functional representation.
Namely, we replace zl by the channel-wise concatenation of z(1:64)

l and MEAN(z
(65:128)
l), where

the mean is taken over the spatial dimensions. This latent function then goes through the post-latent
CNN (CNN in Algorithm 4), as well as a linear layer to output (fµ, fσ) ∈ R256. As for ANP fµ is
processed by Eq (14) and fσ is re-scaled with Eq (13) and is spatially pooled in the case of MNIST
and ZSMM to obtain homoskedastic noise.

12

K Additional results on image completion.

We provide additional qualitative samples and quantitative analyses for the ConvNP and ANP.

Additional ConvNP samples. Fig 4 provides further samples from a ConvNP trained with LML.
We observe that the ConvNP produces reasonably diverse yet coherent samples when evaluated in
a regime that resembles the training regime (in the first four sub-columns of MNIST, SVHN, and
CelebA). However, Fig 4 also demonstrates that the ConvNP struggles with context sets that are
significantly different from those seen during training.

Further comparisons of ANP and ConvNP. We provide further qualitative comparisons of Con-
vNPs, ANPs trained with LML, and ANPs trained with LNP. We omit ConvNPs trained with LNP as
these are significantly outperformed by ConvNPs trained with LML (see e.g. Tab 2).

Fig 5 shows that all models perform relatively well when context sets are drawn from a similar
distribution as employed during training (first four sub-columns of MNIST, SVHN, and CelebA).
Furthermore, we observe that samples from the ConvNP prior tend to be closer to samples from the
underlying data distribution (e.g. for CelebA).

The qualitative advantage of ConvNP is most significant in settings that require translation equivari-
ance for generalization. Fig 5 row 2 (ZSMM) clearly demonstrates that ConvNP generalizes to larger
canvas sizes and multiple digits, while ANP attempts to reconstruct a single digit regardless of the
context set. Finally, Fig 6 provides the test log-likelihood distributions of ANP and ConvNP as well
as some qualitative comparisons between the two.

L Experimental Details on Environmental Data

L.1 Data Details

Table 3: Coordinates for boxes defining the train and test regions. Latitidues are given as (north,
south), and longitudes as (west, east).

Central (train) Western (test) Eastern (test) Southern (test)

Latitudes (52, 46) (50, 46) (52, 49) (46, 42)
Longitudes (08, 28) (01, 08) (28, 35) (19, 26)

ERA5-Land [15] contains high resolution information on environmental variables at a 9 km spacing
across the globe.6 The data we use contains daily measurements of accumulated precipitation at
11pm and temperature at 11pm at every location, between 1981 and 2020, yielding a total of 14,304
temporal measurements across the spatial grid. In addition, we provide orography (elevation) values
for each location. We normalize the data such that the precipitation values in the train set have zero
mean and unit standard deviation.

We consider the task of predicting daily precipitation y, with latitude and longitude as x. In addition,
at each context and target location, we provide the model with access to side information in the form
of orography (elevation) and temperature values. We also normalize the orography and temperature
values to have zero mean and unit standard deviation. We choose a large region of central Europe
as our train set, and use regions East, West and South of the train set as held out test sets (see Fig 7
and Tab 3). At train time, to sample a task, we first sample a random date between 1981 and 2020.
We then sample a square subregion of grid of values from within the train region (which has size
61 × 201). We consider two models, one trained on 28 × 28 subregions, and another trained on
40× 40 subregions. During training, each subregion is then split into context and target sets. Context
points are randomly chosen with a keep rate pkeep with pkeep ∼ U [0, 0.3]. In this section, we train
only on the LML objective.

6URL: https://www.ecmwf.int/en/era5-land. Neither the European Commission nor ECMWF is responsible
for any use that may be made of the Copernicus Information or data it contains.

13

https://www.ecmwf.int/en/era5-land

L.2 Gaussian Process Baseline

We mean-centre the data for each task for the GP before training, and add the mean offset back
for evaluation and sampling. We use an Automatic Relevance Determination (ARD) kernel, with
separate factors for latitude/longitude, temperature and orography. In detail, let x = (xlat, xlon)
denote position, and let ω, t denote orography and precipitation respectively, and let r := (x, ω, t).
Then the kernel is given by

k(r, r′) = σ2
vkl(x,x

′)kω(ω, ω′)kt(t, t
′) + σ2

nδ(r, r
′).

Here each of kl, kω and kt are Matérn– 5
2 kernels with separate learnable lengthscales; δ(r, r′) = 1 if

r = r′ and 0 otherwise; and σ2
v , σ

2
n are learnable signal and noise variances respectively. We learn

all hyperparameters by maximising the log-marginal likelihood using Scipy’s implementation of
L-BFGS.

Transforming the data. As the data is non-negative, we considered applying the transform y 7→
log(ε+ y) for the GP to model. If ε = 0, this would guarantee that the GP would only yield positive
samples, which would be physically sensible as precipitation is non-negative. However, this cannot be
done as precipitation often takes the value y = 0, which would lead to the transform being undefined.
On the other hand, if ε > 0, the GP samples after performing the inverse transform could still predict
a precipitation value as low as −ε, which is still unphysical. Further, a small value of ε leads to large
distortion of the y values in transformed space. In the end, we run all experiments for the GP and NP
without log-transforming the data; hence the models have to learn non-negativity.

L.3 ConvNP Architecture and Training Details

As the ERA5-Land dataset is regularly spaced, we use the on-the-grid version of the architecture,
without the need for an RBF smoothing layer at the input (see App C). All experiments used a
convolutional architecture with 3 residual blocks [6] for the encoder and 3 residual blocks for the
decoder. Each residual block is defined with two layers of ReLU activations followed by convolutions,
each with kernel size 5. The first convolution in each block is a standard convolution layer, whereas
the second is depthwise separable [2]. All intermediate convolutional layers have 128 channels, and
the latent function z has 16 channels. The networks were trained using ADAM with a learning rate
of 10−4. We used 16 channels for the latent function z, and estimated LML using 16-32 samples at
train time, with batches of 8-16 images.

We train the models for between 400 and 500 epochs, where each epoch is defined as a single pass
through each day in the training set, where at each day, a random subregion of the full 61 × 201
central Europe region is cropped. We estimated the predictive density using 2500 samples of z during
test time.

L.4 Prediction and Sampling

To create Tab 3, at test time we sample 28× 28 subregions from each of the train and test regions.
This is done 1000 times. For the GP, we randomly restart optimisation 5 times per task and use the
best hyper-parameters found. In order to remove outliers where the GP has very poor likelihood,
we set a log-likelihood threshold for the GP. If the GP has a log-likelihood of less than 0 nats on a
particular task, then that task is removed from the evaluation.

We find that to produce high quality samples, we need to train the model on subregions that are
roughly as large as the lengthscale of the precipitation process. Hence we sample from the model
trained on 40× 40 subregions in Fig 5 in the main body. We show samples from the model trained
on both 28× 28 subregions and 40× 40 subregions in App M. We also compare to samples from
GPs trained on each context set (no random restarts were used for sampling).

L.5 Bayesian Optimization

We use the models described in App L.3, trained on random 28× 28 subregions of the train region,
and compare to the GP baselines described in App L.2. For the Bayesian optimization experiments
in Fig 6 in the main body, we do not perform random restarts as this was too time-consuming. We
carry out the Bayesian optimization (BayesOpt) experiments in each of the four regions: Central
(train), West (test), East (test), and South (test). Each Bayesian optimization “episode” is defined
by randomly sub-sampling a day (uniformly at random between 1981 and 2020), then sampling a
sub-region from the tested region. To test the models’ spatial generalization capacity (where possible),

14

we sub-sample episodes from each of the four regions with the following sizes: (i) Central: 42x42,
(ii) West: 40x40, (iii) East: 28x28, and (iv) South: 36x36.

Episodes begin from empty sets D(0)
c =, and models sequentially query locations for t = 1, . . . , 50.

Denoting (x(t), y(t)) the query location and queried value at iteration t, the context set is then
updated as D(t)

c = D
(t−1)
c ∪ {(x(t), y(t))}. Denoting y as the complete set of rainfall values in the

sub-region, and y(t) as the set of queried values at iteration t, we can define the instantaneous regret
as rt = max(y)−max(y

(t)
c), and compute the average regret (plotted in Fig 6 in the main text) at

the tth iteration as r̄t = 1
t

∑t
i=1 ri.

M Additional Figures for Environmental Data

M.1 Predictive density

Fig 8 displays the predictive densities for precipitation at different locations, conditioned on a context
set used for testing. The density of the ConvNP is estimated using 2500 samples of z. To examine
why the ConvNP outperforms the GP in terms of log-likelihood, we plot cases where the ConvNP
likelihood is significantly better than the GP likelihood. We see that this is due to the GP occasionally
making very overconfident predictions compared to the ConvNP. We also see that the ConvNP in a
small proportion of cases exhibits very non-Gaussian, asymmetric predictive distribtuions.

M.2 Additional Samples

In this section we show additional samples from the model trained on 28× 28 images (Figs 9 and 10)
and also on 40× 40 images (Figs 11 and 12). Training on larger images reduces the occurence of
blocky artefacts. Fig 5 in the main body was trained on 40× 40 images. Note that samples shown
here are 61× 201, i.e. the size of the entire central Europe train region.

15

Figure 4: Qualitative samples for one of the ConvNP trained with LML in Tab 2. From top to bottom
the four major rows correspond to MNIST, ZSMM, SVHN, CelebA32 datasets. For each dataset
and each of the two major columns, a different image is randomly sampled; the first sub-row shows
the given context points (missing pixels are in blue for MNIST and ZSMM but in black for SVHN
and CelebA), while the next three sub-rows show the mean of the posterior predictive corresponding
to different samples of the latent function. To show diverse samples we select three samples that
maximize the average Euclidean distance between pixels of the samples. From left to right the first
four sub-columns correspond to a context set with 0%, 1%, 3%, 10% randomly sampled context
points. In the last two sub-columns, the context sets respectively contain all the pixels in the left and
top half of the image.

16

(a) ConvNP LML (b) ANP LML (c) ANP LNP

Figure 5: Qualitative samples between (a) ConvNP trained with LML; (b) ANP trained with LML; (c)
ANP trained with LNP. For each model the figure shows the same as Fig 4.

17

(a) MNIST (b) CelebA32

(c) Zero Shot Multi-MNIST (d) SVHN

Figure 6: Log-likelihood and qualitative samples comparing ConvNP and ANP trained with LML

on (a) MNIST; (b) CelebA; (c) ZSMM; (d) SVHN. For each sub-figure, the top row shows the
log-likelihood distribution for both models. The images below correspond to the context points (top),
followed by three samples form ConvNP (mean of the posterior predictive corresponding to different
samples from the latent function), and three samples from ANP. Each column corresponds to a given
percentile of the ConvNP test log likelihood (as shown by green arrows).

18

Figure 7: Training (blue) and test (red) regions in Europe, along with orography data from ERA5Land.

(a) (b)

Figure 8: Predictive density at two target points, where the ConvNP significantly outperforms the
GP. The orange and blue circles show the likelihood of the ground truth target value under the GP
and ConvNP. Note that as the precipitation values are normalized to zero mean and unit standard
deviation, yt = −0.53 corresponds to no rain. In Fig 8a, we see the ConvNP sometimes produces
predictions heavily centered on this value, showing it has learned the sparsity of precipitation values.
In Fig 8b we see the ConvNP predictive distribution is sometimes asymmetric with a heavier positive
tail, reflecting the non-negativity of precipitation.

(a) Ground truth data (b) ConvNP sample 1 (c) ConvNP sample 2 (d) ConvNP sample 3

(e) Context set (f) GP sample 1 (g) GP sample 2 (h) GP sample 3

Figure 9: Samples from the predictive processes overlaid on central Europe, for a model trained on
random 28× 28 subregions of the full 61× 201 central Europe region. Note some blocky artefacts in
the ConvNP samples due to training on small subregions. Here the GP has overfit to the orography
data, with samples that resemble the orography rather than precipitation.

19

(a) Ground truth data (b) ConvNP sample 1 (c) ConvNP sample 2 (d) ConvNP sample 3

(e) Context set (f) GP sample 1 (g) GP sample 2 (h) GP sample 3

Figure 10: Samples from the predictive processes overlaid on central Europe, for a model trained on
random 28× 28 subregions of the full 61× 201 central Europe region. Here the GP has learned a
lengthscale that is too large.

(a) Ground truth data (b) ConvNP sample 1 (c) ConvNP sample 2 (d) ConvNP sample 3

(e) Context set (f) GP sample 1 (g) GP sample 2 (h) GP sample 3

Figure 11: Samples from the predictive processes overlaid on central Europe, for a model trained on
random 40× 40 subregions of the full 61× 201 central Europe region. Here the GP has overfit to the
orography data, with samples that resemble the orography rather than precipitation.

(a) Ground truth data (b) ConvNP sample 1 (c) ConvNP sample 2 (d) ConvNP sample 3

(e) Context set (f) GP sample 1 (g) GP sample 2 (h) GP sample 3

Figure 12: Samples from the predictive processes overlaid on central Europe, for a model trained on
random 40× 40 subregions of the full 61× 201 central Europe region. The GP has again overfit to
the orography data.

(a) Ground truth data (b) ConvNP sample 1 (c) ConvNP sample 2 (d) ConvNP sample 3

(e) Context set (f) GP sample 1 (g) GP sample 2 (h) GP sample 3

Figure 13: Samples from the predictive processes overlaid on central Europe, for a model trained on
random 40× 40 subregions of the full 61× 201 central Europe region.

20

References

[1] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

[2] François Chollet. Xception: Deep learning with depthwise separable convolutions. In Proceed-
ings of the IEEE conference on computer vision and pattern recognition, pages 1251–1258,
2017.

[3] Marta Garnelo, Dan Rosenbaum, Christopher Maddison, Tiago Ramalho, David Saxton, Murray
Shanahan, Yee Whye Teh, Danilo Rezende, and S. M. Ali Eslami. Conditional neural processes.
In Jennifer Dy and Andreas Krause, editors, Proceedings of the 35th International Conference on
Machine Learning, volume 80 of Proceedings of Machine Learning Research, pages 1704–1713,
Stockholmsmässan, Stockholm Sweden, 10–15 Jul 2018. PMLR. URL http://proceedings.
mlr.press/v80/garnelo18a.html.

[4] Marta Garnelo, Jonathan Schwarz, Dan Rosenbaum, Fabio Viola, Danilo J Rezende, SM Eslami,
and Yee Whye Teh. Neural processes. arXiv preprint arXiv:1807.01622, 2018.

[5] Jonathan Gordon, Wessel P. Bruinsma, Andrew Y. K. Foong, James Requeima, Yann Dubois, and
Richard E. Turner. Convolutional conditional neural processes. In International Conference on
Learning Representations, 2020. URL https://openreview.net/forum?id=Skey4eBYPS.

[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[7] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

[8] Hyunjik Kim, Andriy Mnih, Jonathan Schwarz, Marta Garnelo, Ali Eslami, Dan Rosenbaum,
Oriol Vinyals, and Yee Whye Teh. Attentive neural processes. In International Conference on
Learning Representations, 2019. URL https://openreview.net/forum?id=SkE6PjC9KX.

[9] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In In
International Conference on Learning Representations (ICLR), 2015.

[10] Diederik P Kingma and Max Welling. Auto-encoding variational Bayes. arXiv preprint
arXiv:1312.6114, 2013.

[11] Tuan Anh Le, Hyunjik Kim, Marta Garnelo, Dan Rosenbaum, Jonathan Schwarz, and Yee Whye
Teh. Empirical evaluation of neural process objectives. In NeurIPS workshop on Bayesian Deep
Learning, 2018.

[12] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard, Wayne
Hubbard, and Lawrence D Jackel. Backpropagation applied to handwritten zip code recognition.
Neural computation, 1(4):541–551, 1989.

[13] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng.
Reading digits in natural images with unsupervised feature learning. 2011.

[14] Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz Kaiser, Noam Shazeer, Alexander Ku,
and Dustin Tran. Image transformer. In Jennifer Dy and Andreas Krause, editors, Proceedings of
the 35th International Conference on Machine Learning, volume 80 of Proceedings of Machine
Learning Research, pages 4055–4064, Stockholmsmässan, Stockholm Sweden, 10–15 Jul 2018.
PMLR.

[15] Copernicus Climate Change Service. Copernicus Climate Change Service (C3S) (2019): C3S
ERA5-Land reanalysis, 2020. URL https://cds.climate.copernicus.eu/cdsapp#!/
home. (accessed: 15.05.2020).

[16] Terence Tao. An introduction to measure theory, volume 126. American Mathematical Society
Providence, RI, 2011.

[17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural
Information Processing Systems 30, pages 5998–6008. Curran Associates, Inc., 2017.

[18] Yuhuai Wu, Yuri Burda, Ruslan Salakhutdinov, and Roger Grosse. On the quantitative analysis
of decoder-based generative models. arXiv preprint arXiv:1611.04273, 2016.

21

http://proceedings.mlr.press/v80/garnelo18a.html
http://proceedings.mlr.press/v80/garnelo18a.html
https://openreview.net/forum?id=Skey4eBYPS
https://openreview.net/forum?id=SkE6PjC9KX
https://cds.climate.copernicus.eu/cdsapp#!/home
https://cds.climate.copernicus.eu/cdsapp#!/home

	Formal Definitions and Set-up
	Stationary Processes and Translation Equivariance
	Description and Pseudocode for ConvCNP and ConvNP
	ConvCNP Pseudo-Code and Details
	Pseudo-Code for the ConvNP

	Translation Equivariance of the ConvNP
	Recovering the Prediction Map in the Infinite Data / Capacity Limits
	Relationship Between Neural Process and Maximum-Likelihood Objectives
	Effect of Number of Samples Used to Estimate Objective During Training and Evaluation
	Effect of Number of Samples Used for Evaluation
	Effect of Number of Samples Used During Training

	Experimental Details on 1D Regression
	Additional Results on 1D Regression
	Experimental Details on Image Completion
	Data Details
	Training Details
	Architecture Details

	Additional results on image completion.
	Experimental Details on Environmental Data
	Data Details
	Gaussian Process Baseline
	ConvNP Architecture and Training Details
	Prediction and Sampling
	Bayesian Optimization

	Additional Figures for Environmental Data
	Predictive density
	Additional Samples

