
We thank all the reviewers for their insightful and encouraging comments, and will update revision to solve the issues.1

To Reviewer #1. Consider channel number m =O(n2) and sample number n is much larger than depth h in NAS,2

our learning rate (LR) is η = O(λ/
√
m/h3) = O(λ/n). It indeed improves LR requirement in [18-20] which analyze3

convergence of ResNet, e.g. η=O(λ/n2) in [18,19] and η=O(λ/poly(n)) in [20]. As NAS has much dense connections4

than ResNet, it allows larger LR. So our work makes towards the practice setting, and will continue to improve it later.5

To Reviewer #2. 1) We empirically investigate i) more skip connections gives faster convergence and ii) shallow cells6

have faster convergence rate than deep cells. We first set all operations in NAS cell (normal and reduction cells) as7

convolution (3×3), and randomly select 0%, 37.5% and 62.5% operations as skip connections. Next, we stack 8 NAS cells8

to build a network and train on CIFAR10 with same settings. Fig. (a) demonstrates our result i). Moreover, Fig. 3 in [9]9

(a) (b)

also testifies our result i). For result ii), to simply construction, we let each10

node in NAS cell only has one connection. To construct deep network, we use11

convolution to connect the current node with its previous node, i.e. 0→1→2· · ·12

→ 5. For shallow network, we connect the i-th node (i= 1, · · · , 5) to the 0-th13

node with the same convolution. We also stack 8 cells and train them with same14

setting. Fig. (b) demonstrates our result ii). We will update it into revision.15

2) Pooling operations also converge more slowly than skip connections. We consider function h(p(g(x))), where g are16

layers before pooling p, h are subsequent layers and loss. Then we can prove ¬ ‖ ∂h
∂p(g(x))

∂p(g(x))
∂g(x)

‖2F <‖
∂h

∂g(x)
‖2F , where17

the later denotes network h using skip connection. So pooling p reduces gradient and gives slower convergence. For max18

pooling, it only considers the maximum pixels and ignores others, directly giving ¬. For average pooling, by derivation19

we have ∂h
∂p(g(x))

∂p(g(x))
∂gij(x)

=
sij
o2

∂h
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with pooling size o × o, where sij(≤ o2) denotes how many times gij(x) attends20

convolution. If pooling stride s>1, then sij <o
2. If s= 1, for pixels near the edges, their sij <o2. So ¬ always holds.21

Besides, we are sure that with pooling, Theorem 1 still holds for two-layered network and shows that convergence rate22

depends on skip connection heavier. For deeper networks, more efforts and time are needed for further derivation.23

3) For Gram matrix singularity, we set all operations in NAS cell as convolution (3×3), and randomly select 0%, 40%,24

80% operations in the shared path as skip connections to obtain cells A, B and C. Due to memory limitation, we use25

one NAS cell and find that smallest eigenvalues of Gram matrix in A, B and C on CIFAR10 are respectively 1.1×10−4,26

3.4×10−4 and 5.9×10−4, showing benefits of skip connect to singularity. Then we fix the shared path with 40% skip27

connections, and randomly replace 0%, 40% and 80% convolutions in private path with zero operations. Then smallest28

eigenvalues become 3.4×10−4, 1.3×10−4 and 8.7×10−5, showing important of convolution in private path to singularity.29

4) For depth-wise separable convolution (DSC), we can expect the same convergence rate as standard convolution30

(SC). Similar to SC, we formulate DSC as D(W,X)=σ(WpΦp(Φd(X)Wd)). Similar to Φ in manuscript, Φd(X) (Φp(X))31

rearranges features in X along channel (feature) direction for depthwise convolution Φd(X)Wd (pointwise convolution32

WpΦp(X)). Then we replace convolution Conv(W,X) in manuscript with D(W,X), and follow our proof framework to33

prove same results: the convergence rate replies on skip connections heavier than other types of operations.34

5) ReLU is not smooth at only one point, i.e. zero. But the measure of one point is zero. So almost sure, our smoothness35

assumption holds [ arXiv:1706.03175, ICML’17]. Error (%) on CIFAR10 (ImageNet) of the mentioned references [1-3]36

are respectively 2.62 (24.8), 2.6 (24.6) and 2.7 (25.6). Ours is 2.31 (24.3) and thus is better. We will cite them.37

To Reviewer #4. 1) Per your suggestion, we will use X(t)→X(s) (0≤ t≤ s − 1) to better illustrate the path of λs. As38

X(t)(1 ≤ t ≤ h− 2) are shared by X(s)(s ≥ t), our subsequent explanation to Theorem 1 does not need to change.39

Skip connection (SC) has formulation Xs+1 = Xs + F (Xs) where F is a function, e.g. convolution. So to fit ground truth40

Y of Xs, F only fits the residual Y −Xs instead of Y . Recursively, we have Xl =Xs+
∑l−1

t=sF (Xt). Then the gradient of Xs41

is ∇XsE =∇Xl
E · (1+∇Xs

∑l−1
t=sF (Xt)) where E is loss. In most cases, ∇Xs

∑l−1
t=sF (Xt) is much smaller than 1, especially42

for along more training iterations, which means that SC propagates the main gradient flow and thus information flow.43

2) Our theory could be extended to other losses, e.g. cross entropy. Here we choose square error loss because of its much44

simpler gradient computation compared with cross entropy. But with more extra efforts, we can follow our framework45

to establish similar results. Indeed, this is also one reason why recent works [18-21] on network convergence analysis46

focus on square error loss, as different losses reveal similar results but square error loss gives simpler derivation.47

3) Appendix A.1 investigates the effects of λ1 ∼ λ3 to the performance of PR-DARTS. The results show the stable48

performance of PR-DARTS on CIAFR10 when tuning λ1 ∼ λ3 in relatively large ranges, e.g. λ1 ∈ [10−2, 1], λ2 ∈49

[10−4.5, 10−2.5] and λ3∈ [10−4, 10−1.5]. This is mentioned in line 341. So one can choose λ1∼λ3 from the above ranges.50

4) We divide operations in DARTS into skip-connection group and non-skip-connection group, and penalty their average51

active probabilities/weights. The error on CIFAR10 is 2.69% which is slightly better than 2.76% of vanilla DARTS but is52

worse than 2.58% of ours without path-depth-wise regularizer, showing the importance of independent stochastic gates.53


