
Author Response1

We thank the reviewers for their valuable feedback.2

Experiment comparing CD and CG R2: You make a great point that each iteration of CD uses two line searches3

whereas CG uses only one. For problems in which the cost of a line search is comparable to that of solving the4

subproblem, the iteration count is probably not the most fair metric with which to compare CD and CG. Because of5

this, in Figure 1, we compare the number of matrix multiplications used by CD and CG instead. At each iteration of6

CD and CG, the computational cost of line searches is dwarfed by that of the repeated matrix multiplications with7

G∗(∇f(ηkyk + (ηk − 1)g)) necessary to compute the minimum eigenvalue via the Lanczos algorithm. If it were the8

case that the additional line search at each iteration of CD were only saving one minimum eigenvalue computation, then9

we would expect that CD would use about half as many matrix multiplications as CG. However, the histogram indicates10

that CD empirically does better. We cannot prove why this occurs, but we speculate on line 230.11

Experiment comparing CD and BM R3: The large dots on the left in Figure 2 show the performance of a traditional12

BM implementation at various ranks. We will annotate this directly on the plot to make it more clear. We see that pure13

BM, i.e., without the safeguard, does not converge to the global optimum for r = 2, 3, 4 or 5. Even without the greedy14

heuristic, CD outperforms pure BM for r = 2, 3, 4, albeit after more matrix multiplications. At a high enough rank,15

pure BM will probably converge to the optimal value, but we are primarily focused on problems for which memory is16

the limiting factor.17

Assumption of no nonzero direction of recession R3: We agree that the assumption that f have no nonzero direction18

of recession in K is cludgy. To guarantee this is satisfied in problem (8), we could add an extremely small trace penalty.19

This probably would not affect our numerical results in any way. As an alternative assumption, we could stipulate that20

the set of optimal points is bounded and nonempty. This would imply that there is no nonzero direction of recession of21

f in K.22

Matrix sketching and memory efficiency R1: We feel that the theory and practical utility of randomized matrix23

sketches in an optimization algorithm have been well established already in the literature, e.g., [10, 20, 22, 23], and due24

to the space limitations, we treat the sketches essentially as tools. We will improve the citations to the relevant literature25

in Section 4. In Appendix F, we will move the citations on line 453 directly to line 452. R2: The use of the sketch26

means that we do not retain the qk at each iteration. The parameter in the sketch determines how much memory we use27

(only 3n numbers in the experiment in Figure 1). R4: In line 10 of Algorithm 2, we do not need to form qkq
T
k . The28

operator G can be evaluated efficiently on rank-1 matrices because G(qkqTk ) = (qTk G1qk, . . . , q
T
k Gmqk) and matrix29

vector products are efficiently computable for the Gi (by assumption). The same idea holds for line 7 of Algorithm 5.30

In our implementation, we make sure to exploit this.31

Burer-Monteiro R1: It is fair to point out that CD is a heuristic. We should be clearer about that. The assumptions32

we mention in line 44 that are required in order to guarantee the global convergence of BM are very difficult to establish33

in practice. As far as we are aware, they are essentially the matrix version of the restricted isometry property (restricted34

strong convexity and restricted smoothness), and the rank necessary for the guarantees is frequently higher than that35

needed to specify the solution. Verifying the assumptions we make regarding problem (5) is relatively easy and can36

frequently be carried out by inspection. For memory-efficient CD, we really only need to check whether Gi have37

efficient matrix multiplication routines and how large m is relative to n2.38

Related works R1: We do not address CGAL in this paper because we only consider the cone constraint. However,39

we think that directly handling equality constraints is the next natural step for future work. The connection between40

OMP and greedy conic optimization has been examined in detail in [16], and unfortunately, we do not think that we41

have the space to cover it here adequately. R3: Thank you for bringing the paper by Journee et al. to our attention.42

We will include it in our introduction. R4: Regarding the Ochs et al. paper, we do not see how to make meaningful43

comparisons for large scale optimization over the PSD cone using any model function other than the one which reduces44

to CG, i.e., a simple minimum eigenvalue computation at each iteration. Regarding the Rao et al. paper, in order to45

maintain memory-efficiency for very large n, we cannot retain the prior iterates necessary to run CoGEnt. Regarding46

the Braun et al. paper, caching the prior iterates as part of the weak separation oracle would also significantly increase47

the potential memory requirements.48

Other R1: We will adjust our citations to reference published versions instead of ArXiv pre-prints whenever possible.49

Also, we will clean up the sentence on line 279. R3: We will add the citation to [22] in line 172. R4: The notation50

dist∗ is defined on lines 83-84.51
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