
We thank the reviewers for their detailed comments. We first address a few common queries and then follow with1

comments specific to individual reviewers.2

Linearity and comparisons: Several reviewers comment on a lack of comparison with classical methods. We3

emphasize that the background wave speed, σ, and, hence, the forward operator Aσ are unknown (lines 37-38). The4

dependence of Aσ on σ is very nonlinear. As pointed out by Reviewer 1, this makes the problem a challenging and5

novel variant of traditional linear inverse problems, out of reach of the classical approaches. (In practice σ in, say,6

reflector imaging is inferred separately using, crucially, multiple sources rather than just one as in our paper.) It is truly7

a problem that was unlocked by machine learning. Unfortunately, most iterative or learning-based solutions assume a8

known forward operator. This is in particular true for the deep image prior and Tikhonov- and sparsity-regularized9

inverses. There are thus no fair comparisons that can be made with such methods. Further, the true forward operator in10

our inverse problems is non-linear; our networks are modeled after a certain linear approximation but are themselves11

strict non-linear generalizations. The closest papers we refer to, for example, Fan and Ying, assume a smooth known12

background. We compare to the U-Net because the U-Net is incredibly successful on a variety of imaging tasks13

including the ones we address, regularly outperforming the classical methods. Our main message is that this (if we may14

say so) annoying effectiveness is limited to the training dataset for hard, very non-convolutional wave imaging problems.15

By modeling the physics via the routing network, the FIONet robustly generalizes out-of-distribution (OOD).16

Clarity/reorganizing: Several reviewers state that the paper would benefit from reorganization. Our first strategy was17

to describe the core novelty and FIO in the main paper and give technical details in appendices. The reviews make18

it clear that this is unfriendly to people unfamiliar with wave imaging. Thankfully they show a clear path towards19

improving clarity: move some appendix material to main text (explanations and quant. results), expand the intro on20

wave imaging, and move some figures and derivations to the appendix. These changes are not hard and we would be21

pleased to effect them. We thank Reviewer 2 for pointing out issues with notation which we addressed, and to Reviewer22

4 for specifying the hard-to-follow parts. We are confident that the reorganization will make things clearer.23

Reviewer 1—FIONet outside wave imaging? We reiterate that wave-based imaging encompasses a vast range of24

modalities in practice today (lines 25-27, 42-44). Therefore, we do not find the focus on wave imaging particularly25

limiting. That said, the routing network idea applies whenever there is direction-dependent transport, for example in26

fluid flows or ray tracing. Figure 7: Figure 7 shows how wave packets oriented along different directions, ν (red line in27

the Figure) move over a given background. The two warped grids show two directions of propagation after time T28

(Appendix C explains the two directions). The learned warping is exactly what the physics dictates. Renaming: Thank29

you for pointing us to the original “routing network”. We will add a comment and use “wave packet routing networks”.30

Reviewer 2—Large filters and the U-Net? The main reason for the discussion of how the U-Net implements large31

filters is theoretical rather than practical: we argue that the FIONet approximates FIOs by connecting to earlier analytic32

results. You are right (and we will emphasize this better) that there are many ways to implement large filters. The33

practical reason we chose the U-Net is that, empirically, it excels at convolutional and to some extent pseudodifferential34

problems. One may say that the routing network unwarps the input in such a way that it is a simple job for the U-Net.35

We did try a variety of other architectures including dilated convolutions and direct implementation of filters in the36

Fourier domain; the U-Net performed the best. No paired data? Training with ys alone might be accomplished via37

self-supervision. Usually A is known, but knowing it up to a class could suffice! This is exciting, thank you! We will38

try it out asap, but it is out of the scope of this paper which introduces the interpretable geometric architecture. Let us39

add that strong OOD generalization allows us to train on simulated data and test on real data. We can thus learn to solve40

the problem “offline” and then apply to real measurements without fear of overfitting.41

Reviewer 3—Noisy Measurements: We do have results for noisy measurements in Appendix A.3. We trained on clean42

data and tested on 10dB noisy data. Note that in our problems the inverse is L2-stable so additive noise will not cause43

big problems. Training with noise improves results but not dramatically; we would be happy to add those results. The44

U-Net is excellent at removing additive noise and artifacts but it cannot handle geometry even without noise. Artifacts45

in interferometer imaging: Indeed FIOs associated with canonical graphs can exhibit artifacts in case of caustics46

(Appendix E). In fact, a single source in our reflector imaging experiment develops caustics. Interestingly, we show in47

Appendix E that the FIONet handles it well. The explanation is that our routing network can learn arbitrary warpings, not48

just diffeos. (The training data was generated with kWave which simulates full wave physics, so we commit no inverse49

crime.) Empirical OOD: Though motivated by theory our OOD findings are indeed empirical. We will emphasize50

this. Relevance to ML: There is a burgeoning interest in physics-inspired deep learning architectures as pointed out by51

Reviewer #2, as well as in OOD generalization. Comparison to Fan and Ying: While refs. [18,19,20,21] are also52

physics-inspired, they address pseudodifferential operators (contained in FIOs) with simple geometry (singularities53

do not propagate). Their OOD experiments are combinations of training scenarios (e.g., 2 triangles in training, 4 in54

testing), whereas we completely change the data. They do not compare to a strong learning baseline like the U-Net55

which would almost certainly generalize well.56


