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Abstract

We propose a general physics-based deep learning architecture for wave-based
imaging problems. A key difficulty in imaging problems with a varying background
wave speed is that the medium “bends” the waves differently depending on their
position and direction. This space-bending geometry makes the equivariance to
translations of convolutional networks an undesired inductive bias. We build an
interpretable neural architecture inspired by Fourier integral operators (FIOs) which
approximate the wave physics. FIOs model a wide range of imaging modalities,
from seismology and radar to Doppler and ultrasound. We focus on learning the
geometry of wave propagation captured by FIOs, which is implicit in the data, via
a loss based on optimal transport. The proposed FIONet performs significantly
better than the usual baselines on a number of imaging inverse problems, especially

ch

in out-of-distribution tests.

1 Introduction

We propose a deep learning approach for wave-
based imaging with applications ranging from med-
ical photoacoustic tomography to reflection seis-
mology. A simple intuition for imaging with waves
can be gleaned from Figure 1. Elementary wave
packets propagate from where they are created
(sources S 2,3 in 1A), and then possibly scattered
(an interface, 1D), to where they are sensed. When
and where a wave packet arrives at a sensor (1B) de-
pends on its orientation and position and the geome-
try associated with the background wave speed. To
the first approximation, imaging is accomplished
by routing the wave packets back where they were
created or scattered.

We consider the problem of estimating an image,
v from measurements, v obtained by an imaging
forward operator, A, given as

(D

The unknown v could, for example, represent the
interfaces within the subsurface of Earth. The for-
ward operator (and, hence, its inverse) is parameter-
ized by 0. Here, o is the background wave speed,
a material parameter of the medium. Note that o
varies across the domain and controls the ray paths
of wave packets (see Figure 1A,D); thus defining a

u = A,v (+errors).
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Figure 1: A: Sources S, S5 and S5 are recorded
at the surface at times tq, o and t3. B: The
recording surface generates sensor traces that
are used to image the sources. C: Wave pack-
ets are localized in frequency by directional
bandpass filters X;‘i’ - D: Inreflection imaging,
reflections of waves are recorded on the surface
(see Appendix A.6).
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“geometry” that enables wave-based imaging. A, depends on ¢ in a strongly nonlinear fashion. In
this work we assume that o, and hence A, is unknown—we only know A, up to a class.

We aim to estimate the inverse of (1) by a neural network f trained with a loss L. The central
question is how to design f and L. Our approach is based on the physics of wave propagation
as captured by the Fourier integral operators (FIOs) with a loss based on optimal transport. As a
consequence, our network exhibits strong out-of-distribution (OoD) generalization and improves
interpretability. FIOs describe a vast variety of imaging modalities including reflection seismology [1,
22], thermoacoustic [28, 44] and photoacoustic [17] tomography, radar [3, 35, 10], and single photon
emission computed tomography [23], modeling both forward and inverse maps. Therefore, our
network design is applicable for many imaging modalities.

An FIO F,, maps the input u € Ly(R?) (for example, a record of pressure time traces (see Figure
1B)) to its output F, [u] (for example, an image of a human brain), as

F(0) = s [, al (e e @

where 4 denotes the Fourier transform of u, a(x,§) is called the symbol of F,, and S, (x,&) is
a suitable phase function (cf. Section 2.2). FIOs are a natural extension of convolutions. If
S(z, &) = (z,§) and a(z,§) = a(€), (2) is indeed a convolution; it models simple deblurring
or denoising. Allowing a general a(z, ) makes it a pseudodifferential operator; these appear as
approximate solutions of elliptic PDEs [46] or normal operators of imaging [27]. For a general
phase S(z, &), F becomes powerful: it can deform the domain in an orientation-dependent way. This
models approximate solutions of hyperbolic PDEs and therefore wave propagation. The geometry of
an FIO (Figure 1), dictated by the medium parameter o, is completely captured in its phase S, (x, ).

1.1 Our results

Our architecture design, based on discretization of FIOs [8, 25], improves interpretability and enables
strong out-of-distribution generalization without any additional transfer- or meta-learning schemes [6,
31, 32]. This is essential to imaging in exploratory sciences and medical applications where failing
out-of-distribution can be disastrous [5]. A key ingredient that allows this is a module that learns
geometry—the wave packet (WP) routing network. This module is interpretable in that its output
provides physically meaningful deformation maps of the domain. The WP routing network warps
pixel grids and never “looks” at pixel intensities. Hence, once trained, it is data-independent. Another
key ingredient to learning this geometry is a training strategy and a loss function based on optimal
transport.

1.2 Relation to prior work

Existing physics-based approaches either substitute forward models into unrolled networks or apply
auto-differentiation to spatiotemporal fields parameterized by neural networks [7, 36, 37]. In either
case the forward operator should be known in closed form and should be simple to implement; neither
is true in our case. The most popular choice for end-to-end learning in imaging are convolutional
neural networks (CNNs). There is a vast number of papers on supervised learning for inverse imaging
problems; we mention a small selection [41, 40, 38, 27]. CNNs are (approximately) translation-
covariant and they excel in problems that are classically solved by filtering. Examples are deblurring,
denoising or inverting the Radon transform which becomes a Fourier multiplier upon a composition
with its adjoint. Versatile architectures like the U-Net [39] can be applied to more general problems
but they lack the right structure to capture wave physics and therefore fail out-of-dataset. A related
issue with current CNN architectures is the lack of interpretability: it is not straightforward to
associate different parts of a CNN with corresponding physical processes.

In the context of waves, architectures based on wavelet transforms [18] were applied to various
imaging modalities [19, 20, 21]. It is however unclear whether the architecture generalizes out-
of-distribution or how they compare to standard high-quality baselines such as the U-Net, which
performs surprisingly well on simple generalization tasks. Finally, we point out the work on meta
learning for Calderén-Zygmund operators [24]; our o is similar to their parameterizations.



2 Imaging with Fourier integral operators

The true A, and its inverse can be approximated by FIOs. Our aim, however, is not to simply replicate
the functionality of FIOs in a neural network. We rather follow the structure of FIOs to tease out
and generalize the key components required to build a more general neural wave imaging operator.
The geometry of wave propagation in a medium depends on the orientation of the elementary wave
packets (see Figure 1). This suggests to decompose the input into its directional components via a
bank of oriented bandpass filters. Analysis of FIOs provides a geometrically and computationally
optimal choice of these filters.

2.1 Filtering u to a box in the dyadic-parabolic tiling of Fourier space

It has been shown in [45] that for wave propagators, the so-called dyadic-parabolic tiling of the
Fourier space as shown in Figure 1C is optimal [43]. Such a tiling divides the Fourier space into
overlapping boxes B, 1, where the length of the box is approximately square of its width. The boxes
are indexed by v, k where v is a unit-vector denoting the orientation of each box and % is its scale.
We define smooth directional bandpass filters, )212, & supported on B, ;. such that they form a partition

of unity, x3(¢) + D ok>1 2w ;zﬁk(g) =1V & Wefilter 4 := Fu into its directional components as
Uy 1 (€) = )212,),6(5)@(5). Note that @(§) = 3, ;. 1, (§) by definition of )ng

2.2 Geometry of FIOs: diffeomorphisms

We now show how the phase function of an FIO characterizes the geometry of wave propagation. The
phase S, is positive homogeneous of degree 1 in . A Taylor expansion of S, (y, ) in B, j around
(y,v) is then

0S,
Sa(y7£) = <€a 876

The second-order term S3(y, &) varies only slowly within a box, so exp(iSa(y, £)) can be absorbed
in the amplitude a(y, &). Following this expansion if we discretize the Fourier transform in (2) and
ignore the a and S5 terms, then for a box-filtered u,, ;, we have

(y, u)> + S2(y, &) + higher order terms. 3)

9S4

(Fauu,k)(y) ~ (27 ‘ al/}k(g)ei@7 o¢ (W) = Up,k (aér(:% V))

Therefore, for each box, B, j (or equivalently each v), the imaging operator could be coarsely
approximated via a diffeomorphism or warping, y — T, (y,v) = 0¢5,(y,v). We implement this
warping via a bilinear resampling of u,, . Note that the medium’s wave speed, o dictates the warping.

2.3 Low-rank separated representations

To get a more accurate approximation, we incorporate the amplitude a(y, £) and the second-order
term So(y, £) via a low-rank separated representation [25],

Ry
a(y, &) exp 1S (y, )] L(€) =~ Y ) ()06,
r=1

where Ry, ~ k/log(k). Multiplications by 19191)@ (&) act as convolutions in space, while a,(f,)c(y)
correspond to simple (diagonal) spatial multipliers. We can now use (3) in (2) to get

Ry
(Fou)(y) = Y. S all@) Y w990 )32, .(€) ale). @)
v,k r=1 E€L, i

Note that the B, j’s overlap and therefore, we can generalize results of (4) to allow for the
convolutions with 9, ;, interact across the boxes. This parallels a sum across channels in a

CNN convolution layer. We denote C,(u) = wuyx, AU} (w) = o) w and introduce
Hl(,rlz (w) = >, 19,(:,1;”,7,6, % U, 1, to generalize the convolutions with ¥, ;. We introduce I
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Figure 2: The FIONet. Upsampling blocks use bilinear interpolation.

as I(w, Ty (y,v))(y) := w(Ty(y,v)). Therefore, I resamples w via bilinear interpolation on a grid
warped via T,,. Note that [ is fixed and only 7} is learned. This gives

Ry x
NS AN o I(H) 0 Cui(w), To (y.1)) | (). 5)
v,k r=1

3 FIONet: the architecture for wave-based imaging

The action of an FIO, F}, in (5) suggests incorporating spatial multipliers (A k) convolutions (H k),
grid generators (1;,) and directional filters (C,, 1) in our architecture. The dyadlc parabolic t111ng of
the frequency domain corresponds to the map C, . It is a fundamental property tied to the structure
of wave propagation. We thus implement it using fixed, non-trainable box filters constructed from
PyCurvelab [47]. These filters correspond to the fixed curvelet transform layer in Figure 2 that takes
an input u defined on an M x M pixel grid G and returns an M x M x Nj, output of spectrally filtered
u,,1.S, where IV}, is the number of boxes in the tiling (see Figure 1C). We then design a convolutional
module ff g, , wave packet (WP) routing module fr ¢, and a spatial multiplier module f4 9, with
parameters 6y, 61, 6 4 such that

Fion RM*MxNy _y RMxMxNoR [Fr.6, (w )]( LN Hﬁfg(w%k) ,
fror : RP x RZ o RMxMx2 fT,gT(Zﬂ/) ~ ng)( yVyea, (6)
Fao, RMXMxNyR _y RMxMxXNp [faoa()r ~ YE 1AT) V})C

The map frr 9, operates on the entire stack of box-filtered inputs, u,,; allowing for channel inter-

action. Moreover, it has nonlinear activation units which generalize H, ;. AS,T,)C is implemented via
simple multiplication layers. Here R := Ry, is the maximum number of terms in (5) and is a
hyperparameter in our training. Note that we assume that o belongs to a set of natural medium wave
speeds parametrized by a low-dimensional code z € Z C RP and write ¢ as o(z). We denote the
full set of trainable FIONet network parameters by © = (0,07, 60,4). The network output on an
M x M input u is

FIONete (u ZfAeA (f165 (Conw), fro. (2,0)). (7

3.1 Geometry module: warped grids and resampling

The geometry module takes as input an M x M x C tensor and resamples each of the C' channels
defind on the pixel grid G to a new grid given by fr .. The WP routing network, fr g, is the
central component of the geometry module that routes wave packets via diffeomorphisms introduced
in (3)." Note that the grid given by fr 4, depends on the direction v. Due to the fixed filtering map

'We can learn more general transformations than diffeomorphisms; for example, we can handle caustics [25].
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Figure 3: Left: Small shifts of the (v, k) channels introduce strong distortion. Right: Comparison of

metrics between oscillatory images: MSE(z, z5), SSIM(|x|, |zs|) and entropically smoothed W5 4,
between |z|/||x||1 and |xs|/||xs||1 via Sinkhorn iteration [42].

Cy i, the set of all vs is fixed. We associate each of the C' channels with one v; this mapping is
fixed. Therefore, for each channel of the input to the geometry module, we receive a warped output
grid G, := frg,(z,v) for a given z (see Figure 2). The channel is then warped via the bilinear
resampling operator I using the grid G,,. We zero-fill if points in G, lie outside G.

An important input to the WP routing network is z which represents a low-dimensional code for
o, the wave speed of the medium. The WP routing network can therefore learn the geometry for
mutliple backgrounds; see Appendix E for some preliminary results. However, in this work, we
assume that our all our data was generated over a fixed but still unknown wave speed corresponding to
acode z = 2’. Not knowing the wave speed leads to not knowing the exact forward operator, which
therefore renders reconstruction methods like Tikhonov-regularized inverses, sparsity-promoting
inverses along with more modern methods like deep image prior [50] infeasible.

Note that since the WP routing network only works on fixed vs and does not look at image pixel
intensities, once trained it is data-independent. This is key for OoD generalization as the implicitly
learned geometry essentially captures the effect of o. It is absent in popular neural architectures like
the U-Net [39].

3.2 Learning diffeomorphisms via optimal transport

We train the FIONet using a labeled set of input—output images {(u;, v;)} (see (1)). We do not assume
having any direct geometric information about the medium. The geometric routing information is
implicit in {(u;, v;)} and we aim to infer it by a suitable training strategy. We note that the warping
was previously used in spatial transformers [26], but those act independently on each channel. Here it
is essential that the different G,, grids are tightly coordinated so as to get a meaningful reconstruction
(see Figure 3A).

We devise a two-stage training strategy: first, we only train the geometry module which captures the
bulk of the physics, i.e., weletfo(u) =3, I(Cy (1), f1,0, (2, 7)) such that an appropriate loss
metric £(v, fg(u)) is minimized. This stage is important to prevent the convolutional module f ¢,
from overfitting the training data. After ey epochs, we train the full network as in (7) using the MSE
loss.

We illustrate in Figure 3 that for the first stage of training, popular metrics such as MSE for £ (v, fg(u))
fail for filtered images u,, , = C,, x(u). Since u,, , are oscillatory £ has many local minima which
leads to the problem of cycle skipping [52, 53, 34]. SSIM is smoother but still does not give “good”
gradients for training. A natural optimal transport metric based on entropically smoothed W, 4, [16]
gives a consistently increasing distance metric.

While smoothed Wasserstein metrics have been used for inverse problems [2] via the iterative
Sinkhorn—Knoop algorithm [11], we find that backpropagating through the iterates is unstable. We
thus adopt the method of [16] and weaken the loss to an unsupervised one: instead of matching ;s
to v;s in a paired fashion, we match the marginal distributions, P\vl and ]P’| o (u)] while, importantly,
using W », distance between images as the ground metric. Note that we use absolute value to ensure
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Figure 4: Three inverse problems. Left: Reverse time continuation: The initial pressure (boxes)
propagates over the shown background wave speed. (b) Inverse source problem: Waves are recorded
on the blue sensor line giving sensor traces (c) Reflector imaging: A source (blue dot) sends a pulse
that is reflected at the interfaces. The dashed white line show an example ray path.

positivity of measures. Asin [16], we use a critic network fp ¢, that is employed only during the
stage-1 of “geometric” training. The critic network estimates the Wi yy, , (P, P| forp (u)|)» giving
the final learning objective as
minmax o, ., f0.op ([0]) = Evnr, .05 ([0]) + Mo, (1V 0,05 (0) 0,0, = 1)*.
T D

where Py, is the density generated via linear interpolations of samples from | ¢, ()| and P,,,.

From Figure 3, we see that minor misalignments of the (v, k) channels strongly distorts the output.
Distribution matching synchronizes the diffeomorphisms to produce sharp images in the first stage of
training. However, this metric only matches the distributions and not actual data pairs, hence giving
us only plausible looking images. In the second stage, we train the entire FIONet (including the
convolutions) using only the standard MSE loss. Much of the required geometry is already learnt in
the first stage which is only tuned further via the MSE loss along with training the other modules in
the network. Please see Figure 2 for the architecture details of the FIONet.

3.3 Modeling the low-rank separated representation by the U-Net

Finally, we implement the map H,, ;. We want to use standard convolutional layers. However, it
is essential to ensure that we can implement the large receptive-field filters ¥, i, of H, ;. We
choose to use the U-Net [39] owing to its success in convolutional tasks [27]. We give an argument
on why U-Net is successful at modeling arbitrarily large filters based on the polyphase decomposition
in Appendix B. Note that there are several ways to implement large filters like factorized filters,
implementing filters in Fourier domain etc. In our experiments we found that U-Net was best.

Approximating FIOs by the FIONet While the FIONet architecture generalizes FIO, it is impor-
tant to show that as a special case it can approximate exact FIOs. We make the following simplifying
assumptions: 1) the WP routing network is implemented using fully connected layers; 2) the U-Net
uses regular downsampling instead of max pooling. The first assumption gives us access to standard
approximation theorems; in practice it only makes the forward pass slower.

Theorem 1. There exists a set of weights © = (0, 01,0 4) such that
|F[u) = FIONeto[u]| = O(27"/2)]u]]. ®)

This parallels [25, Theorem 2.1]. Here, the presumed sampling density in the “space” domain is
naturally of order 2 - 2¥m though an oversampling factor is required.

4 Experiments

We showcase the advantages of learning geometry and the fact that the same network architecture can
be applied to various problems. We choose three inverse problems as shown in Figure 4: reverse time
continuation, inverse source problem, and reflector imaging. We discuss reflector imaging and provide
additional results in Appendix A. In all problems, we learn the geometry induced by the background
wavespeed directly from data. In all our experiments we invoke scale separation. The coarse scale is
implicit in the learned geometry. We thus aim to image the fine scales and hence high-pass our target
reconstructions. The dataset and training experiment details are given in Appendix D. We choose as
baseline, the U-Net, arguably the most successful architecture in imaging [40, 27].
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Figure 5: Reverse time continuation results. FIONet performs better in training distribution and is
significantly better in out-of-distribution generalization.
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Figure 6: Inductive bias of FIONet: for each dataset the topmost row shows the ground truth, the left
column per dataset shows baseline U-Net results and the right column shows FIONet results. Each
row shows the result trained with /N samples from the training distribution.

4.1 Reverse time continuation

In this problem a source pressure field, pg propagates for time 7" over an unknown background. We
are given the final pressure pr at t = 1" and we wish to estimate py. This problem most intuitively
illustrates the geometry of wave propagation. Formally, it corresponds to a sum of two FIOs, one per
half-wave propagation (Appendix C). We therefore train two copies of ff g,, in parallel to model the
convolutions (see (4)) in the two FIO branches, but follow them by a single WP routing network which
now outputs 2 warped grids per v. In Figure 7), we show the two learned grids GG, for each v. The
outputs of fr ¢, , and fg e, , are resampled on the grids given by the WP routing network. We train
on 3000 samples of randomly oriented short thick box sources and test on samples from completely
different distributions. As shown in Figure 5, in the training distribution the FIONet performs slightly
better than the U-Net. In out-of-distribution testing the U-Net seems to synthesize outputs from
box-like patterns seen during training and therefore does considerably worse compared to FIONet.
For numerical results, please see Table 1 in Appendix A.2. We attribute the out-of-distribution results
to our architecture design. Due to the geometry module, the effect of the background wave speed o is
completely captured within the learned grids G, which are data-independent once trained. We also
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Figure 8: Inverse source problem results: We faithfully recover what the sensor sees.

study the invariance to noise in measurements in Appendix A.3 and show intermediate results from
the first stage of training in Appendix A.4.

Favorable inductive bias: Figure 6 shows that even with a small training set (1000 samples), the
FIONet achieves good performance both within and out of training distribution, which improves with
the dataset size. The U-Net still synthesizes outputs using box-like patterns seen in the training set.

Interpretability: Since the WP routing network explicitly models the geometry of the operator, the
G, s are physically meaningful estimates (Figure 7). The deformed grids clearly show the propagation
of the two half-wave solutions (Appendix C). We also found that whenever the FIONet did not give
reasonable warped grids, the out-of-distribution performance suffered. This suggests that getting
the geometry right is indeed central to imaging. This information is not explicitly encoded in any
previous architecture.

4.2 Inverse source problem

In many imaging modalities (for e.g., photo-acoustic tomography, seismic imaging) sensors are
placed at the domain boundary. Instead of having a snapshot of the wavefield at time 7', we have
the pressure trace at the sensor locations for all times [0, T']. The inverse map in such scenarios is
modeled by a single FIO [29].

In Figure 8 we show how the FIONet handles such a scenario. Note that the sensor trace is in the
(2z1,t) domain while the source is in the (21, x2) domain. We deliberately choose a background such



that not all wave-packets reach the sensor boundary. In Figure 8, we show the interfaces that are
“seen” by the sensor as masked source pressure. We see that these are faithfully recovered by the
FIONet. Often in deep learning approaches to imaging, one claims that since the baseline U-Net
reconstructs unseen data as well it is better. However, these networks can be unreliable when tested
out-of-distribution [5]. Here we aim to be faithful to the physics.

The FIONet does not predict below the black line which demarcates the “seen” and “unseen” regions
as dictated by the physics. Nonetheless, from the “seen” data it still reconstructs more faithfully
out-of-distribution than a black-box U-Net even without knowing the background. For numerical
results see Table 2 in Appendix A.2.

5 Conclusion and future work

We proposed a general architecture, FIONet, and a training strategy for solving inverse problems
in wave-based imaging. The wave packet routing network—central to our proposal—manifests the
geometry of wave propagation and scattering in its warped output grids. We showed that explicitly
learning the geometry enables strong out-of-distribution generalization, outperforming competitive
baselines on a variety of imaging problems. This is essential in applications of machine learning in
exploratory science. FIOs model a remarkable collection of inverse problems in exploratory imaging,
all of which can be addressed with the FIONet. This points to exciting opportunities in applying
machine learning to relevant problems in medicine, Earth and planetary sciences, and astronomy. Our
codes are available” for the community to reproduce our results and use our architectures for their
own imaging modalities.

*https://github.com/kkothari93/fionet
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Broader Impact

We do not see any major ethical consequences of this work. Our work has implications in the
fields of exploratory imaging — earthquake detection, medical imaging etc. Our work improves the
quality and reliability of imaging in these fields. Improving these fields has direct societal impact in
finding new natural preserves, improved diagnosis in healthcare etc. A failure of our system leaves
machine learning unreliable in exploratory imaging. Our method provides strong out-of-distribution
generalization and hence is not biased according to the data.
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