
We thank the reviewers for their thoughtful feedback and for their appreciation of the novelty of1

considering query-efficiency in finding homology of decision boundaries using active learning1.2

R1: Realism of assumptions and usefulness of upper-bounds. The assumptions made are known3

to give strong indications of the practical applicability of the algorithms and are standard in literature4

(see, e.g., the seminal paper [11]). In section 6 of the supplement, we provide numerical complexity5

comparison and show that the proposed framework uses ten times fewer labels than passive learning6

in the example considered. This is also anticipated in the real dataset provided that the conditional7

number 1/τ (intrinsic complexity) of the manifold is high (lines 63-68). R1: Extending Theorem 18

to persistence diagrams. This is an excellent point. Persistence diagrams encode the birth and death9

times of topological features as a function of ε of the LC-complex. Our experimental results in Figure10

4 and Figure 7(b) of the main paper show that samples found by active learning generate persistence11

diagrams closer to ground-truth ones than passive learning. Directly relating our theoretical results to12

persistence diagrams is a more fundamental question in manifold learning, and is out of the scope of13

the theory of the current manuscript; it is certainly an interesting avenue for future work – we will14

remark on this in the final version.15

R2: The containment of ∂C and LČ complex in the tubular neighborhood of M. We very16

much appreciate the R2’s detailed review and technical comments. First, we want to clarify a typo17

in line 122 where D0 there actually refers to points of class 0 in the LČ complex but not the entire18

dataset. Nevertheless, as R2 points out, assumption 1(a) (line 118) does not guarantee that all samples19

of ∂C or the LČ complex falls within the tubular neighborhood ofM (the same issue occurs in [3]).20

However, this can be mitigated by requiring a minor extra constraint on the tubular neighborhood of21

O – under assumption 1(a), we only require that 3r is bounded from above by (
√
9−
√
8)τ . To see22

this, let Tubr′(O) to denote a r′-radius tubular neighborhood of O. For samples in a covering ball23

Br/2(x) on manifoldM, a k-radius nearest neighbor graph requires k >= 2r to have two furthest24

samples of opposite labels connected. That said, after constructing a k-radius nearest neighbor graph25

G to satisfy lemma 1 (line 172), the smallest region covered by ∂C of G (line 165) is O+ Tub2r(O).26

This should guarantee all samples of ∂C come from maximum allowed tubular neighbourhood ofM.27

We remark here that the same fix applied to the LČ complex will help correct [3]. We will make this28

change in final version.29

R3: Importance of density near the decision boundary. Assumption 1(a)(line 118) indicates30

density near decision boundaries is nonzero. As a result, provided sufficient samples from the density,31

the proposed framework will succeed; notice that the focus here is on labeling efficiency and not32

sample complexity. R3: Using topology to guide active sample acquisition. This paper presents33

the first analysis of active learning for homology recovery with efficient labeling, and we adopted a34

simple but effective two-stage framework. Using the topology statistics to guide active learning is a35

very compelling avenue for future work. R3: On realism of the model marketplace, comparison36

to other statistics, and other applications. Our “model marketplace” application is different from37

[3]. As R3 suggests, we trained a bank of classifiers with the same set of training data (line 290-294)38

and verified model selection with the validation data from the same distribution; this is compelling39

evidence for the proposed framework, and it could indeed be made stronger by comparison with40

other statistics. Currently, our experiments are used to demonstrate that we find the homology of41

decision boundaries with fewer labels. Other applications where our work applies can be label42

efficient implementation of a topological regularizer [2], complexity measure [6], and finding coresets43

that preserve the homology of the decision boundary. In figure 1 below, we show results on the44

coreset application in binary classification in MNIST. As observed, predominantly active learning45

outperforms passive learning from coresets.46

Figure 1: Training classifiers with a coreset of 300 data points sampled by active learning/passive learning.
The orange (resp. blue) bars represent the number of MNIST classification cases (out of 45) where active (resp.
passive) learning outperforms the other in a certain range of parameters (line 271-276) of the classifier.

1all references refer to the main manuscript
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