
Appendix A Supplementary figures1

Figure A.1: Extraction of complex production rules. The LHS is computed by representing the nodes
in Tp as a non-terminal node, removing the edges between nodes in Bp and labeling the nodes in Bp
as nΣ. The computation of RHS is removing the nodes in Bp and turning the connected subgraphs in
H ′ to non-terminal nodes. To reduce the number of production rules, only the skeleton of the RHS is
kept and a production rule for each node in Tp is introduced to maintain the information.

Figure A.2: An example of transforming a molecule into a parse tree and inferring molecular NCE
grammar production rules.

1



Figure A.3: An example of sampling a molecule from a molecular NCE grammar. The production
rules are shown in Figure A.2.

Appendix B Supplementary information of the proposed grammars2

The algorithm to infer production rules of the molecular NCE grammar and parse molecular graphs3

into parse trees is shown in Algorithm 1, where vT is a node of the parse tree T and Neigh(v)H is4

the set of first-hop neighbors of a node v in the graph H . For a molecular graph H with ‖VH‖ nodes,5

the time complexity of Algorithm 1 is O(‖VH‖2).6

Compared with MHG, our proposed grammars have better generalization ability. MHG is an7

extension of hyperedge replacement grammar, which is based on the clique tree decomposition of8

graphs. In molecular hypergraphs, the clique tree decomposition might introduce a large number9

of rare substructures and cause a low coverage rate. For instance, in the MHG inferred from the10

ZINC250k dataset, 1,424/2,031 are starting rules and 2/3 of the starting rules are used by less than11

ten molecules. At the same time, 16/5,000 molecules in the testing set cannot be covered by these12

inferred production rules. In comparison, our grammar is based on neighboring relationships. In13

molecular graphs, the degree and neighbors of each node are limited by chemical rules, thus the14

substructure involved in our grammar is relatively simpler and in smaller fragments, which leads to15

fewer production rules and a higher coverage rate (see Appendix C).16

In the generation process, to be consistent with the inference process, the non-terminals with labels of17

nΣ have higher priority than non-terminals with labels of x, and the non-terminals that are generated18

later have higher priority. The non-terminal with the highest priority in the intermediate graph is19

rewritten each time.20

2



Algorithm 1: Inference of molecular NCE grammar production rules
Input: H , P , Bp, Tp, vT
Output: T , P
Function ParseMolecularGraph(H , P , Bp, Tp, vT ):

if Bp is empty then
Initialize tree T ;
Initialize vT as the root of T ;
Add the initial node to Bp;
Arbitrarily select a node from H and add it to Tp;

end
Compute LHS;
Record the embedding function φ;
Denote H ′ as a node-induced subgraph of H where VH′ = VH \ (Bp ∪ Tp);
Remove nodes in Bp from H;
Represent connected subgraphs in H ′ by non-terminal nodes;
Obtain the RHS;
if ‖Tp > 1‖ then

for v in Tp do
Add a child node vc to vT ;
Extract a production rule pv for v;
Label vc as pv;
Add pv to P ;

end
RHS ←−The skeleton of RHS;

end
p←− (LHS,RHS, φ);
Label vT as p;
Add p to P ;
T (descent) ←− ∪v∈Tp

Neigh(v)H ;
for connected subgraph h in H ′ do

Add a child node vc to vT ;
B(h) ←− (∪v∈Vh

Neigh(v)H) \ Vh;
B(h)
p ←− Tp ∩ B(h);
T (h)
p ←− T (descent) ∩ Vh;

Denote H(h) as an induced subgraph of H , where VH(h) = Vh ∪ B(h)
p ;

ParseMolecularGraph(H(h), P , B(h)
p , T (h)

p , vc);
end
return T, P ;

End Function

3



Appendix C Basic statistics of the inferred molecular NCE grammars21

First, we report the basic statistics of the molecular NCE grammars inferred from the ZINC250k22

dataset.23

To check the generalization ability of the molecular NCE grammars, we parsed the molecules in24

the training data. From the 220,011 training molecules, we obtained 1,775 production rules. To25

investigate the coverage rate of the grammar, we parsed the 5,000 molecules in the test data using the26

production rules inferred from the training data to estimate the percentage of molecules that cannot27

be represented by the inferred grammar. The result shows that only 3 out of the 5,000 molecules28

cannot be parsed. Our coverage rate is higher than the one achieved by the MHGs and the number of29

our production rules is less.30

Next, we inferred grammatical production rules from all 250k ZINC250k molecules, resulting in31

1,838 production rules in total. Each molecule is associated with 28 production rules on the average.32

The maximum number of production rules associated with a molecule is 51.33

For the antibiotic dataset, we extracted production rules from all known molecules. We parsed the34

molecules starting from different nodes to extend the number of training production sequences. 3,89735

production rules were obtained from the dataset.36

For the data provided by GuacaMol, 7256 production rules were obtained from the training set,37

leading to 293/238708 molecules in the test set uncovered. In comparison, 13110 production rules38

were obtained for the MHGs and 1088/238708 molecules were not covered by the inferred MHG.39

When training the generation model, we set Lmax as the maximum number of production rules that a40

molecule in the dataset may be associated with. During the test, we set Lmax as∞ in the experiments41

on ZINC250k and GuacaMol, but in the antibacterial experiment, considering the application scope42

of the classifier, we set Lmax the same as in the training process.43

Appendix D Experimental settings of the baseline methods44

Four state-of-the-art methods are compared with our method. 1) Junction tree VAE (JT-VAE) is a45

state-of-the-art algorithm for generating molecular graphs under the VAE framework. The basic idea46

of JT-VAE is to generate molecular graphs cluster by cluster and join each generated cluster using a47

greedy search. JT-VAE can generate molecules with 100% validity and it outperformed the previous48

methods such as Syntax-directed VAE and grammar VAE in property optimization and constrained49

property optimization. 2) Graph convolutional policy network (GCPN) aims to generate molecules50

atom by atom and optimize the properties of molecules by RL. As chemical validity cannot be51

guaranteed intrinsically in GCPN, it checks the validity of the graph in each step and discards invalid52

parts. A beam search is used in GCPN to improve sampling efficiency. GCPN achieved much better53

performance in property optimization, property range targeting and constrained optimization than54

the previous methods including JT-VAE. 3) Molecular hypergraph grammar variational autoencoder55

(MHG-VAE) uses molecular hypergraph grammars (MHGs) to assist the generation of molecular56

graphs and focuses on generating molecules with limited property evaluations. MHG-VAE uses an57

MHG as the prior of its VAE model, and achieved better performance than GCPN and JT-VAE under58

the limited property evaluation setting, but showed no advantage over other methods when property59

evaluation was unlimited. 4) Molecule Swarm Optimization (MSO) is a state-of-the-art algorithm in60

multi-objective molecular optimization with the particle swarm optimization algorithm and achieved61

excellent performance on the benchmarks provided by GuacaMol. The codes of the baselines were62

downloaded from GCPN, JT-VAE, MHG-VAE and MSO.63

Property optimization with unlimited property evaluations. The results of GCPN were copied64

from [5]. As JT-VAE provided the molecules it generated when optimizing the penalized logP, we65

obtained the results directly by scoring the provided molecules. As for the task of optimizing QED,66

we set the objective function as the QED score and ran the code of JT-VAE with the default setting67

ten times to generate novel molecules. The results were obtained by summarizing all the molecules68

generated in the ten runs. For MHG-VAE, we copied its results in optimizing penalized logP from [3]69

and obtained the results in optimizing QED by running its code in the default setting with the QED70

score as the objective function. For MSO, to fairly compare with our method, the results in Table 171

were obtained by constraining the maximum number of atoms to 51 and the best hyperparameters72

4

https://github.com/bowenliu16/rl_graph_generation
https://github.com/wengong-jin/icml18-jtnn
https://github.com/ibm-research-tokyo/graph_grammar
https://github.com/jrwnter/mso


used in the corresponding paper [4] were adopted in our experiments. We ran MSO 100 times73

and merge all the obtained molecules as the results. As a comparison, the results of MSO without74

constraints on the number of atoms as well the results of our method under relaxed constraints are75

shown in Table G.1.76

Constrained property optimization. The results of all baselines were copied from the correspond-77

ing papers [5, 3, 2].78

Comprehensive evaluations with GuacaMol. The results of all baselines were copied from the79

corresponding papers [4, 1].80

Property range targeting. The results of GCPN and JT-VAE were directly copied from [5].81

Property optimization with limited evaluations: The results of JT-VAE and GCPN were copied82

from [3]. For MHG-VAE, we ran the code ten times and took the first 250 molecules each time, with83

the same hyperparameters used in [3]. For MSO, we ran their code ten times and took the first 50084

molecules each time, with the default hyperparameters.85

Appendix E Evaluation of antibacterial properties86

Enzymes are biological catalysts. A protease is an enzyme that performs proteolysis, that is, it triggers87

protein catabolism by hydrolysis of the peptide bonds that link amino acids together in a polypeptide88

chain. A kinase is an enzyme that catalyzes the transfer of phosphate groups from high-energy,89

phosphate-donating molecules to specific substrates. As enzymes play an important role in bacterial90

activities, molecules with high enzyme inhibitor scores, protease inhibitor scores or kinase inhibitor91

scores are thought to be high-potential candidates for antibiotics.92

The inhibitor scores were computed by using the Molinspiration online server. The larger the score93

is, the higher is the probability that the involved molecule will be active. In particular, molecules94

with positive scores are usually thought to be active. In our experiment, we adopted the thresholds95

used by Molinspiration and regarded those with scores larger than 0.2 as active molecules and those96

with scores larger than 0.5 as highly active molecules.97

5

https://www.molinspiration.com/cgi-bin/properties


Appendix F Supplementary details of model training98

The model is pre-trained with known molecules by maximizing the likelihood and then trained99

for each optimization task. The hyperparameters in reward functions are optimized for each task100

independently. For tasks with unlimited property evaluations, the other hyperparameters are optimized101

on the optimizing penalized logP task. The hyperparameters for the optimization with limited property102

evaluations are optimized independently. For each task, the best molecules found by the policy are103

used as known trajectories to train the model to accelerate convergence. With 1080Ti, the pre-training104

on ZINK250 took around 27 hours and the optimization stages took 30 minutes∼ 24 hours depending105

on the tasks.106

6



Appendix G Supplementary results107

Figure G.1: The 20 molecules with the highest penalized logP scores generated by MNCE-RL in
optimizing the penalized logP score with unlimited property evaluations. The diversity of 5000
molecules is 0.722.

7



Table G.1: The maximum penalized logP scores with different Lmax values. The results of MSO are
copied from the corresponding paper [4].

Method
Penalized logP

1st 2nd 3rd 50th Top 50
Avg.

Validity

MSO (no constraints on the number of atoms) 26.10 - - - - -

MNCE-RL (Lmax = 51) 18.33 18.18 18.16 17.52 17.76 100%
MNCE-RL (Lmax = 90) 28.09 28.04 28.00 26.52 26.99 100%

MNCE-RL (Lmax = 110) 34.06 34.04 33.92 32.96 33.33 100%

References108

[1] N. Brown, M. Fiscato, M. H. Segler, and A. C. Vaucher. Guacamol: benchmarking models for de109

novo molecular design. Journal of chemical information and modeling, 59(3):1096–1108, 2019.110

[2] W. Jin, R. Barzilay, and T. Jaakkola. Junction tree variational autoencoder for molecular graph111

generation. In International Conference on Machine Learning, pages 2323–2332, 2018.112

[3] H. Kajino. Molecular hypergraph grammar with its application to molecular optimization. In113

International Conference on Machine Learning, pages 3183–3191, 2019.114

[4] R. Winter, F. Montanari, A. Steffen, H. Briem, F. Noé, and D.-A. Clevert. Efficient multi-objective115

molecular optimization in a continuous latent space. Chemical science, 10(34):8016–8024, 2019.116

[5] J. You, B. Liu, Z. Ying, V. Pande, and J. Leskovec. Graph convolutional policy network for117

goal-directed molecular graph generation. In Advances in neural information processing systems,118

pages 6410–6421, 2018.119

8



Figure G.2: The 20 molecules with the highest QED scores generated by MNCE-RL in optimizing
the QED score with unlimited property evaluations. The diversity of 5000 molecules is 0.870.

9



Figure G.3: Five target molecules (the first column) in constrained optimization and their correspond-
ing optimized molecules generated by MNCE-RL (the second and the third columns).

10



Figure G.4: The best penalized logP scores of the molecules found by different methods depending
on the number of function evaluations.

11



Figure G.5: The 20 molecules with the highest penalized logP scores generated by MNCE-RL in
optimizing the penalized logP score with limited property evaluations.

12



Figure G.6: The ten molecules with the highest scores assigned by the classifier in generating
candidates of antibiotics and their corresponding property scores.

13


	Supplementary figures
	Supplementary information of the proposed grammars
	Basic statistics of the inferred molecular NCE grammars
	Experimental settings of the baseline methods
	Evaluation of antibacterial properties
	Supplementary details of model training
	Supplementary results

