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Abstract

In this paper, we revisit the problem of distribution-independently learning half-
spaces under Massart noise with rate 7. Recent work [DGT19] resolved a long-
standing problem in this model of efficiently learning to error 77+ ¢ for any € > 0, by
giving an improper learner that partitions space into poly(d, 1/¢) regions. Here we
give a much simpler algorithm and settle a number of outstanding open questions:

(1) We give the first proper learner for Massart halfspaces that achieves 7 + €.

(2) Based on (1), we develop a blackbox knowledge distillation procedure to
convert an arbitrarily complex classifier to an equally good proper classifier.

(3) By leveraging a simple but overlooked connection to evolvability, we show any
SQ algorithm requires super-polynomially many queries to achieve OPT + e.

We then zoom out to study generalized linear models and give an efficient algorithm
for learning under a challenging new corruption model generalizing Massart noise.
Lastly, we empirically evaluate our algorithm for Massart halfspaces and find it
exhibits some intriguing fairness properties.

1 Introduction

A central challenge in theoretical machine learning is to design learning algorithms that are provably
robust to noise. We will focus on supervised learning problems, where we are given samples (X, Y")
where the distribution on X is arbitrary and the label Y is chosen to be either +1 or —1 according to
some unknown ground truth function. We will then allow an adversary to tamper with our samples in
various ways. We will be particularly interested in the following models:

(1) Halfspaces: Y = sgn({w*, X)) for some unknown vector w*.
(2) Generalized Linear Models: Y € {+1} is a random variable with conditional expectation

ElY [ X] =o((w", X))
where the link function o is odd, monotone, and L-Lipschitz.

It is well-known that without noise there are simple, practical, and provable algorithms that work in
the PAC learning model [Val84]. For example, the perceptron algorithm [Ros58] learns halfspaces
with margin, and the Isotron algorithm [KS09] is an elegant generalization which learns generalized
linear models (GLMs), even when ¢ is unknown.

There are many natural models for noise. While it is tempting to gravitate towards the most general
models, it turns out that they often make the learning problem computationally hard. For example,
we could allow the adversary to change the labels however they want, and ask to find a hypothesis
with nearly the best possible agreement over the class. This is called the agnostic learning model
[Hau92, KSS94]; Daniely [Dan16] recently showed it is computationally hard to learn halfspaces in
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this model, even weakly. At the other end of the spectrum, there are overly simplistic models of noise:
for example, we could assume that each label is randomly flipped with fixed probability n < 1/2.
This is called the random classification noise (RCN) model [AL88]. Bylander [Byl94] and Blum et
al. [BFKV98] gave the first algorithms for learning halfspaces under random classification noise. By
now, there is a general understanding of how to accommodate such noise (even in generalized linear
models, where it can be embedded into the link function), usually by modifying the surrogate loss
that we are attempting to minimize.

The modern goal is to find a delicate balance of making the noise model as flexible, expressive,
and realistic as possible while maintaining learnability. To that end, the Massart noise model
[SI088, Coh97, MNT06] seems to be an appealing compromise. In this setting, we fix a noise
level n < 1/2 and each sample (X,Y") has its label flipped independently with some probability
n(X) <.

There are a few interpretations of this model. First, it lets the adversary add less noise at a point x
than RCN would. It may seem surprising that this (seemingly helpful!) change can actually break
algorithms which work under RCN. However, this is exactly the problem with assuming a fixed noise
rate — algorithms that work under RCN are almost always overtuned to this specific noise model.

Second, Massart noise can be interpreted as allowing an adversary' to control a random 7 fraction
of the examples. Thus it circumvents a major source of hardness in the agnostic learning model —
an adversary can no longer control which points it gets to corrupt. A natural scenario in which this
type of corruption can manifest is crowdsourced data labeling. In such settings, it is common for a
central agency to randomly distribute the work of labeling data to a group of trustworthy “turks”—
users, federal agencies, etc. However, if a fraction of the turks are untrustworthy, perhaps harboring
prejudices and biases, they can try to degrade the learner’s performance by injecting adversarially
chosen labels for the random subset of examples they are assigned.

Recently, Diakonikolas, Goulekakis and Tzamos [DGT19] resolved a long-standing open question
and gave the first efficient algorithm for learning halfspaces under Massart noise, over any distribution
on X. However it has some shortcomings. First it is improper: rather than outputting a single
halfspace, it outputs a partition of the space into polynomially many regions and a potentially
different halfspace on each one. Second, it only achieves classification error 1 + €, though it
may be possible to achieve OPT + € error, where OPT is the misclassification error of the best
halfspace. Indeed, stronger accuracy guarantees are known under various distributional assumptions
[ABHUI15,ZLC17, YZ17, ABHZ16, DKTZ20a].

1.1 Our Results

In this work we resolve many of the outstanding problems for learning under Massart noise. In doing
so, we also make new connections to other concepts in computational learning theory, in particular to
Valiant’s model of evolvability [Val09]. First, we give the first proper learning algorithm for learning
a halfspace under Massart noise without distributional assumptions.

Theorem 1.1 (Informal, see Theorem C.18). For any 0 < n < 1/2, let D be a distribution
over (X,Y) given by an n-Massart halfspace, and suppose X is supported on vectors of bit-
complexity at most b. There is an algorithm which runs in time poly(d, b, 1/€) and sample complexity

O(poly(d,b)/€*) and outputs a classifier w whose 0-1 error over D is at most 1) + €.

In fact, when the margin is at least inverse polynomial in the dimension d, our algorithm is particularly
simple. As with all of our proper learning algorithms, it is based on a new and unifying minimax
perspective for learning under Massart noise. While the ideal minimax problem is computationally
and statistically intractable to solve, we show that by restricting the power of the max player, we get
a nonconvex optimization problem such that: (1) any point with sufficiently small loss achieves the
desired 1) + € error guarantee, and (2) gradient descent successfully finds such a point.

An attractive aspect of our formalism is that it is modular: by replacing different building blocks in
the algorithm, we can arrive at new guarantees. For example, in the non-margin case we develop

a cutting-plane based proper learner that improves the O(poly (d, b) /€5) sample complexity of the

'This equivalence is literally true only for an oblivious adversary, but in Appendix I we explain that all the
algorithms in this paper succeed in the adaptive case as well.



improper learner of [DGT19] to O(poly(d,b)/e) (see Theorem C.18). If we know the margin is
only polynomially small, we can swap in a different strategy for the max player and improve the
dependence on d and b (Theorem C.15). If we know the underlying halfspace is sparse, we can
swap in a mirror descent strategy for the min player and obtain sample complexity depending only
logarithmically on d (Theorem C.12). For the dependence on ¢, note that there is a lower bound of
Q(1/€2) which holds even for random classification noise (see e.g. [MN*06]).

The above result shows that an improper hypothesis is not needed to obtain the guarantees of [DGT19].
In fact, this underlies a more general phenomena: using our proper learner, we develop a blackbox
knowledge distillation procedure for Massart halfspaces. This procedure converts any classifier,
possibly improper and very complex, to a proper halfspace with equally good prediction accuracy.

Theorem 1.2 (Informal, see Theorem D.3). Let D, b be as in Theorem 1.1. There is an algorithm
which, given query access to a possibly improper hypothesis h and O(poly(d, b)/e*) samples, runs
in time poly(d, b, 1/¢€) and outputs a proper classifier w whose 0-1 error over D exceeds that of h by
at most €. If the underlying halfspace has a margin vy, there is an algorithm that achieves this but

only requires 6(d /v2et) samples and runs in near-linear time.

This is surprising as many existing schemes for knowledge distillation in practice (e.g. [HVD14])
require non-blackbox access to the teacher hypothesis. Combining our reduction with known improper
learning results, we can establish a number of new results for distribution-dependent proper learning
of Massart halfspaces, e.g. achieving error OPT + € over the hypercube {4-1}" for any fixed ¢ > 0
(see Theorem D.5). We will return to this problem in a bit.

Theorem 1.2 tells us that if we are given access to a “teacher” hypothesis achieving error OPT + ¢,
we can construct a halfspace with equally good accuracy. Is the teacher necessary? To answer
this, we study the problem of achieving OPT + € error under Massart noise (without distributional
assumptions). Here we make a simple, but previously overlooked, connection to the concept of
evolvability in learning theory [Val09]. An implication of this connection is that we automatically
can give new evolutionary algorithms, resistant to a small amount of “drift”, by leveraging existing
distribution-dependent algorithms for learning under Massart noise (see Remark E.9); this improves
and extends some of the previous results in the evolvability literature.

The main new implication of this connection, leveraging previous work on evolvability [Fel08], is the
first lower bound for the problem of learning Massart halfspaces to error OPT + €. In particular, we
prove super-polynomial lower bounds in the statistical query (SQ) learning framework [KS94]:

Theorem 1.3 (Informal, see Theorem E.1). Any SQ algorithm for distribution-independently learning
halfspaces to error OPT + o(1) under Massart noise, requires a super-polynomial number of queries.

We remark that the SQ framework captures all known algorithms for learning under Massart noise,
and the lower bound applies to both proper and improper learning algorithms. Actually, the proof
of Theorem 1.3 gives a super-polynomial SQ lower bound for the following natural setting: learn-
ing an affine hyperplane over the uniform distribution on the hypercube {41}%¢. Combined with
existing works [ABHU15, ZLLC17, YZ17, ABHZ16, DKTZ20a], which show polynomial runtime
is achievable for e.g. log-concave measures and the uniform distribution on the sphere, we now
have a reasonably good understanding of when OPT + € error and poly(1/e, d) runtime is and is not
achievable.

Having resolved the outstanding problems on Massart halfspaces, we move to a more conceptual
question: Can we learn richer families of hypotheses in challenging Massart-like noise models? In
particular, we study generalized linear models (as defined earlier). Unlike halfspaces, these models
do not assume that the true label is a deterministic function of X. Rather its expectation is controlled
by an odd, monotone, and Lipschitz function that is otherwise arbitrary and unknown and depends
upon a projection of the data along an unknown direction. This is a substantially richer family of
models, capturing both halfspaces with margin and other fundamental models like logistic regression.
In fact, we also allow an even more powerful adversary — one who is allowed to move the conditional
expectation of Y in both directions, either further from zero, or, up to some budget ( > 0, closer
to or even past zero (see Remark B.3 for a discussion of how this generalizes Massart halfspaces).
This can be thought of as taking one more step towards the agnostic learning model (in fact, if 0 = 0
it captures a noisy version of agnostic learning, see Remark B.4), but in a way that still allows for
meaningful learning guarantees. We give the first efficient algorithm that works in this setting:



Theorem 1.4 (Informal, see Theorem F.1). Let o : R — [—1, 1] be any odd, monotone, L-Lipschitz
Sunction. For any € > 0 and 0 < ( < 1/2, there is a polynomial-time algorithm which, given
poly(L, et (¢ V €)™ 1) samples from a (-misspecified GLM with link function o and true direction
w*, outputs an improper classifier h whose 0-1 error over D satisfies
1 _ *
exr(y) < L= Eplo ("))

X 2
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When ¢ = 0, we can further find a proper halfspace achieving this in time polynomial on an
appropriate notion of inverse margin (Theorem F.14), generalizing our result for Massart halfspaces.

Finally in Section G we study our algorithm for learning Massart halfspaces on both synthetic and
real data. In the synthetic setting, we construct a natural example where the input distribution is a
mixture of two gaussians but the error rates on the two components differ in a way that biases logistic
regression to find spurious directions that are close to orthogonal to the true direction used to label
the data. In real data we study how varying the noise rates across different demographic groups in the
UCT Adult dataset [DG17] can sometimes lead off-the-shelf algorithms to find undesirable solutions
that disadvantage certain minority groups. This variation could arise in many ways and there are
numerous empirical studies of this phenomenon in the social sciences [Goy19, OW11, LEPT13].
For example, in microcredit systems, certain groups might have lower levels of trust in the system,
leading to higher levels of noise in what they self-report [Gui94, Gal97, KRZ14]. It can also come
about in models where agents are allowed to manipulate their inputs to a classifier at a cost, but
different groups face different costs [HIV 19]. In fact we show a rather surprising phenomenon that
adding larger noise outside the target group can lead to much worse predictions on the target group in
the sense that it leads certain kinds of algorithms to amplify biases present in the data. In contrast, we
show that our algorithm, by virtue of being tolerant to varying noise rates across the domain, are able
to be simultaneously competitive in terms of overall accuracy and yet avoid the same sorts of adverse
effects for minority groups.

1.2 Technical Preliminaries

Generative Models and Notation Throughout, given a distribution D over labeled examples, we
will let (X,Y") and (x, y) respectively denote the random variable given by D, and a deterministic
point in the domain of D. First recall the usual setting of classification under Massart noise.
Definition 1.5 (Classification Under Massart Noise). Fix noise rate 0 < n < 1/2 and domain X.
Let Dy be an arbitrary distribution over X. Let D be a distribution over pairs (X,Y) € X x {£1}
given by the following generative model. Fix an unknown function f : X — {+1}. Ahead of time, an
adversary chooses a quantity 0 < n(x) < n for every x. Then to sample (X,Y) from D, X is drawn
from Dy, and Y = f(X) with probability 1 — n(X), and otherwise Y = — f(X). We will refer to
the distribution D as arising from concept f with n-Massart noise.

In the special case where X is a Hilbert space and f(x) = sgn({w*, x)) for some unknown w* € X,
we will refer to the distribution D as arising from an n-Massart halfspace.

Given w and x € X, let erre(w) = n(x) denote the probability over the Massart-corrupted
response Y that sgn({w,x)) # Y. Given X’ C X, denote the zero-one error of w over X’ by

erryr(w) £ Prp[sgn((w, X)) #Y | X € X']. Forany h(-) : X’ — {#£1}, we will also overload
notation by defining erry/(h) £ Prp[h(X) # Y | X € &']. If h(-) is a constant classifier which
assigns the same label s € {£1} to every element of X", then we refer to the zero-one error of h(-)
by erry/(s) = Prp[Y # s | X € X’]. When working with a set of samples from D, we will use err
to denote the empirical version of err.

Given A\ > 0, let /\(w,x) £ Ep[LeakyRelu,(—Y(w,X)) | X = x|, where LeakyRelu, (2)
is defined to be (1 — \)z if z > 0 and Az otherwise. Observe that LeakyRelu, is convex for
all A < 1/2. Similar to [DGT19], we will work with the convex proxy for 0-1 error given by

Ly(w) £ Ep, [¢x(w,X)]. We will frequently condition on the event X € X" for some subsets
X' C X.Let LY " denote the corresponding loss under this conditioning.

We will consider the following extension of Massart halfspaces.

Definition 1.6 (Misspecified Generalized Linear Models). Fix 0 < ¢ < 1/2 and Hilbert space X.
Let o : R — [—1, 1] be any odd, monotone, L-Lipschitz function, not necessarily known to the learner.



Let Dy be any distribution over X supported on the unit ball.> Let D be a distribution over pairs
(X,Y) € X x {£1} given by the following generative model. Fix an unknown w* € X. Ahead of
time, a (-misspecification adversary chooses § : X — R for which

— 20 < 6(x)sgn((w",x)) <1 —|o((w",x))|

forall x € X. Then to sample (X,Y) from D, X is drawn from Dy, and Y is sampled from {1}
so that E[Y | X] = o({w*, X)) + 6(X). We will refer to such a distribution D as arising from an
¢-misspecified GLM with hnk function o.

We emphasize that the case of ( = 0 is already nontrivial as the adversary can decrease the noise
level arbitrarily at any point; in particular, the 7-Massart adversary in the halfspace model can be
equivalently viewed as a O-misspecification adversary for the link function o(z) = (1 — 2n)sgn(z).
While this is not Lipschitz, in the case that the halfspace has a v margin we can make it O(1/7)-
Lipschitz by making the function linear on [—+, ], turning it into a “ramp” activation [KS09]. The
¢ = 0 GLM model is also a special case of the Tsybakov noise model [T+ 04].

Given i.i.d. samples from D, a learner A’s goal is to output h : X — {+£1} for which erry (h) is as
small as possible, with high probability. We say A is proper if h is given by h(x) £ (@, x).

2 Properly Learning Halfspaces Under Massart Noise

An Idealized Zero-Sum Game. Our proper learning algorithms are all based on the framework of
finding approximately optimal strategies for the following zero-sum game:

e e M W
where A is a fixed parameter chosen slightly larger than 7), and ¢(X) can be any measurable, nonnega-
tive function such that E[¢(X)] = 1. We can think of the min player as the classifier, whose goal
is to output a halfspace w with loss almost as small as the ground truth halfspace w*. On the other
hand, the max player is a special kind of discriminator whose goal is to prove that w has inferior
predictive power compared to w*, by finding a reweighting of the data such that w performs very
poorly in the LeakyRelu loss. This is based on the fact that in the Massart model, for any reweighting
¢(X) of the data, w* performs well in the sense that E[c(X){)(w*, X)] < 0.

However, directly solving this minimax problem is statistically and computationally intractable. The
key to our approach is to fix alternative strategies for the max player. We then let the w player play
against this adversary and update their strategy in a natural way (e.g. gradient descent), and analyze
the resulting dynamics. Thus, our framework naturally yields simple, practical learning algorithms.
We note that a similar zero-sum game based approach was used in concurrent work of [DKTZ20b]
for a different problem, learning halfspaces under the more general Tsybakov noise model [T 04]
with distributional assumptions on X in quasipolynomial time, and a very recent polynomial time
version in the same setting [DKK20].

Remark 2.1. We briefly explain the approach of [DGTI19] in the context of (1) and why their
approach only yields an improper learner. In the first step of the algorithm, they minimize the
LeakyRelu loss over the entire space (i.e. take ¢(X) = 1). They show this generates a w with good
zero-one loss on a subset of space S, fix this hypothesis on S, and then restrict to X \ S (i.e., take

o(X) = % ) and restart their algorithm. Because they fix ¢ before minimizing over w, their first
step is minimizing a fixed convex surrogate loss. However, by Theorem 3.1 of [DGT19], no proper

learner based on minimizing a fixed surrogate loss will succeed in the Massart setting. In contrast,
our algorithms choose c adversarially based on w and thus evade the lower bound of [DGT19].

Algorithm and Analysis For clarity of exposition, we focus here on halfspaces with a margin; we
will show in Section C.2 of the supplement how standard techniques allow us to extend to the general
case [Coh97, BFKV98]. Our proper learner is based upon the following upper bound on (1):

Hg‘llglglggﬂf[éx(w ; X) [ [(w, X)| <7l 2)

™t is standard in such settings to assume Dy has bounded support. We can reduce from this to the unit ball case
by normalizing points in the support and scaling L appropriately.



where 7 will be restricted so that Pr[|(w, X)| < r] > e for some small ¢ > 0. By (greatly) restricting
the possible strategies for the discriminator to “slabs” along the direction of w, we completely fix the
problem of intractability for the max-player. In particular, the optimization problem over r > 0 is
one-dimensional, and the expectation can be accurately estimated from samples.

Algorithm 1: FINDDESCENTDIRECTION(W, €, §, \)

1 Form D from m = O(log(2/8)/e~?) samples, let L denote LeakyRelu loss w.r.t. D.

BN - N7 I NI ]

R« {r>0:Prp[X e S(w,r)] > e}
7* 4— argmax,.. ﬁf(W’T) (w).

return g = VL™ (w).

Algorithm 2: FILTERTRON(€, 1,6, A\, T')
Let w be an arbitrary vector in the unit ball.

Build an empirical distribution # from m = Q(log(T/5)/€?) samples (to use as a test set).
fort =1t T do

if err(w;) < 1 + ¢/2 then return w;.

else

L g+ < FINDDESCENTDIRECTION(wy, €/6,5/2T, \).

wi—Bige _
Wil matt T for B = 1/t

However, by doing this we are faced with two new problems: First, computing the optimal w is a
non-convex optimization problem, so it may be difficult to find its global minimum. Second, the
value of (2) is only an upper bound on (3), so we need a new analysis to show the optimal w actually
has good prediction accuracy. To solve the latter issue, we prove in Lemma 2.2 that any w with value
< 0 for the game (2) achieves prediction error at most A 4+ O(e) and, since we can take A = 7+ O(e),
we get a proper predictor achieving n + O(e) error, matching the improper learner of [DGT19]:

Lemma 2.2 (Lemma C.4 in supplement). Suppose that (X,Y) ~ D with X valued in R* and Y
valued in {+1}. Suppose that w is a vector in the unit ball of R? such that errx (w) > \ + 2¢ for

some X\, € > 0. Then there exists r > 0 such that Prp[X € S(w,r)] > 2¢ and Lf(w"r) (w)>0.

Now, knowing that it suffices to find a w with negative value for (2), we can resolve the issue of
optimizing the non-convex objective over w. If gradient descent fails to find a point w with negative
LeakyRelu loss, this means the max player has been very successful in finding convex losses where
the current iterate w, performs poorly compared to w*, which achieves negative loss. This cannot
go on for too long, because gradient descent is a provably low regret algorithm for online convex
optimization [Zin03]. This proves the margin case of Theorem 1.1.

3 Learning Misspecified GLMs

We now proceed to the more challenging problem of learning misspecified GLMs. Like [DGT19],
our algorithm MISSPECGLM (see Algorithm 9 in the supplement) breaks the domain & into disjoint
regions {X ()} and assigns a constant label s() € {£1} to each. However the key challenge is that
GLMs are inherently richer predictive models. They can have regions where they have high and low
confidence. What this means for us is that in order to compete with the optimal predictor sgn(w™*, -)
there is no longer a global upper bound on the error that we can afford in each region. Rather, the
target error that we are shooting for can vary wildly (in ways that we cannot directly estimate from
the data) across regions.

Splitting, Merging, and Freezing Regions. Our algorithm maintains a piecewise-constant predic-
tor over a set of /ive and frozen regions; a region is frozen only if we can certify that we achieve nearly
optimal prediction error on it. How can we ever certify this? The following tells us that optimizing
the convex LeakyRelu loss can indeed prove lower bounds on the optimal zero-one loss:

Lemma 3.1 (Informal, see Lemma F.4). Let € > 0 be arbitrary, and let X' be any subset of X. Define
A=min{\>0: LY (w*) < —2 Elo((w*,X))| | X € X']}. Then errxr (w*) > X — ¢ — O(e).



Based on data we can estimate \ as defined in the Lemma. If our current zero-one loss on X" is
at most A + O(¢), we can safely freeze the region X’ because our error rate is close to optimal. If
not, we split the region in two (using a similar rounding to [DGT19]) and argue that by doing so we
can either (1) improve the accuracy of our predictor (see Lemma F.3), or (2) reduce the amount of
variance in accuracy unexplained by the partition. Then an “energy decrement” argument guarantees
successful termination.

The last complication is that just splitting regions all of the time would lead to exponential runtime
and sample complexity. To fix this, we add a crucial merging step to keep the number of regions
bounded, and show that our progress guarantee holds in spite of this step:

Lemma 3.2 (Informal, see Lemma F.12). In the course of running LEARNMISSPECGLM, if a region
in the current partition X = UX'") with constant labels {s(i)} gets split, but the overall zero-one
error of the classifier does not change, then even after some regions of the partition possibly get
merged immediately afterwards, the variance V;[ert v (sV)] increases by poly(e,1/L, ).

The final predictor is a threshold circuit whose structure records the history of splitting and merging
regions over time. The details are rather involved and we defer them to Section F of the supplement.

4 Statistical Query Lower Bounds

To prove Theorem 1.3, we establish a surprisingly missed connection between learning under Massart
noise and Valiant’s notion of evolvability [Val09]. Feldman [Fel08] showed that a concept f is
evolvable with respect to Boolean loss if and only if it can be efficiently learned by a correlational SQ
(CSQ) algorithm, i.e. one that only gets access to the data in the following form. Rather than directly
getting samples, it is allowed to make noisy queries to statistics of the form E(x y)~p[Y - G(X)]
for any G : X — {£1}. See Section E.I in the supplement for the precise definitions. Note that
unlike general SQ algorithms, CSQ algorithms do not get access to statistics like Ex)~p, [G(X)],
and when Dy is unknown, this can be a significant disadvantage [Fell1].

At a high level, the connection between learning under Massart noise and learning with CSQs (without
label noise) stems from the following simple observation. For any function G : X — {£1}, concept
f, and distribution D arising from f with r-Massart noise

E [Y-GX)]= E [fX)GX)-29(X))].
(X,Y)~D (X,Y)~D

One can think of the factor 1—27(X) as, up to a normalization factor Z, tilting the original distribution
Dy to some other distribution D, If we consider the noise-free distribution D’ over (X, Y") where
X ~ Dy andY = f(X), then the statistic E(x,y)~p[Y - G(X)] is equal, up to a factor of Z, to the
statistic E(x,y)~p’[Y - G(X)] (Fact E.5 in the supplement).

This key fact can be used to show that distribution-independent CSQ algorithms that learn without
label noise yield distribution-independent algorithms that learn under Massart noise (Theorem E.4 in
the supplement). It turns out a partial converse holds, and we use this in conjunction with known
CSQ lower bounds for learning halfspaces [Fell 1] to establish Theorem 1.3.

5 Numerical Experiments

We evaluated FILTERTRON, gradient descent on the LeakyRelu loss, logistic regression, and random
forest (to compare with a less interpretable, non-halfspace classifier) on the UCI Adult dataset,
obtained from the UCI Machine Learning Repository [DG17] and originally curated by [Koh96].?
It consists of demographic information for N = 48842 individuals, with a total of 14 attributes
including age, gender, education, and race, and the prediction task is to determine whether a given
individual has annual income exceeding $50K . Henceforth we will refer to individuals with annual
income exceeding (resp. at most) $50K as high (resp. low) income. Some relevant statistics on
individuals in the dataset: 23.9% are high-income, 9.6% are African-American, 1.2% are high-
income and African-American, 33.2% are female, 3.6% are high-income and female, 10.3% are
immigrants, and 2.0% are high-income immigrants. Because our theoretical guarantees are in terms

3We also conducted synthetic experiments where FILTERTRON outperformed some baselines, see Section G.1 of
the supplement.



of zero-one error on the distribution with Massart corruptions, we measured the performance using
this metric, i.e. both the training and test set labels are corrupted by the Massart adversary.

For various 7 and various predicates p on demographics, we considered the following n-Massart
adversary: for individuals who satisfy the p (the target group), do not flip the response, and for all
other individuals, flip with probability 7. The intuition is that because most individuals in the dataset
are low-income, the corruptions will make those not satisfying p appear to be higher-income on
average, which may bias the learner against classifying individuals satisfying p as high-income.

We measured the performance of a classifier under this attack along two axes: A) accuracy over the
entire test set, and B) accuracy over the high-income members of the target group in the test set.

For every p, we took a five-fold cross validation of the dataset, and for every 5 € [0,0.1,0.2,0.3,0.4]
we repeated the following five times and took the mean: (1) randomly flip the labels for the training
and test set according to the Massart adversary, (2) train on the noisy training set, and (3) evaluate
according to (A) and (B). For FILTERTRON and gradient descent on the LeakyRelu loss, we ran for
2000 iterations with step size 0.05 and e chosen by a naive grid search over [0.05,0.1,0.15, 0.2].
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Figure 1: UCI Adult: Effect of Massart adversaries, targeting African-Americans, females, immi-
grants respectively, on accuracy of FILTERTRON and baselines. Left/center/right depict accuracy over
entire test set/high-income subset of target group/high-income subset of complement of target group.

The predicates p that we considered were (1) African-American, (2) females, and (3) individuals
whose native country is not the United States; Figure 1 plots the medians across each five-fold
cross-validations, with error bars given by a single standard deviation. The experiments on the Adult
dataset were conducted in a Kaggle kernel with a Tesla P100 GPU, and each predicate took roughly
40 minutes to run. In all cases, while the algorithms evaluated achieve very similar test accuracy,
FILTERTRON correctly classifies a noticeably larger fraction of high-income members of the target
group than logistic regression or gradient descent on LeakyReLU, and is comparable to random forest.
We defer additional implementation details and experimental results to the supplement. All code for
the experiments can be found at https://github.com/secanth/massart.

Fairness There is by now a mature literature on algorithmic fairness [DHP' 12, HPS16, KMR17],
with many well-defined notions of what it means to be fair coming from different normative consid-
erations. There is no one notion that clearly dominates; rather it depends on the circumstances and
sometimes they are even at odds with one other [Chol7, KMR17, MP19]. Our results are perhaps
most closely related to the notion of equality of opportunity [HPS16], as our experiments show that
some off-the-shelf algorithms can suffer from high false negative rates on various demographic groups
when noise is added to the rest of the data. In contrast, we show that provably robust algorithms can


https://github.com/secanth/massart

be a useful ingredient in both anticipating and mitigating certain patterns of unfairness that can arise
from using off-the-shelf learning algorithms. Our specific techniques are built on top of new efficient
algorithms to search for portions of the distribution where a classifier is performing poorly and can
be improved.

While we stress that the appealing properties that these experiments suggest that our techniques
possess are purely empirical observations, given that Massart noise is a model of varying noise across
populations, it is plausible that algorithms designed to tolerate Massart noise will generally work
better in situations when noise varies across target groups. We believe that these tools may find other
compelling applications.



Broader Impacts

In this work we design algorithms with provable robustness guarantees in the challenging setting
where the level of noise is allowed to vary across the domain. This models several scenarios of
interest, most notably situations where data provided by certain demographic groups is subject to
more noise than others. In a natural experiment on the UCI Adult dataset, we show that coping with
this type of noise can help mitigate some natural types of unfairness that arise with off-the-shelf
algorithms. Moreover our algorithms have the additional benefit that they lead to more readily
interpretable hypotheses. In many settings of interest, we are able to give proper learning algorithms
(where previously only improper learning algorithms were known). This could potentially help
practitioners better understand and diagnose complex machine learning systems they are designing,
and troubleshoot ways that the algorithm might be amplifying biases in the data.
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