
We thank the reviewers for their positive and helpful feedback. We are encouraged that they find our method scalable1

(R1, R3), widely applicable (R3) and our handling of interpolation errors (R1, R2) and evaluation extensive (R1). In a2

thorough revision we will include the reviewers’ suggestions. Specifically we will (i) improve the outline of the paper3

(R1), (ii) clarify in Sec. 4.1 the need of a certifiably robust classifier hE (R1) and (iii) add to Sec. 5.3 the explanation to4

calculate the inverse of the method in general (R1, R3). Below we answer the individual questions.5

R1; Can you handle high dimensional transformations (stAdv/Wasserstein AdvEx)? BASESPT and DISTSPT can6

be applied directly to highly parametrized transformations like `2 bound vector field transformations (
∑
p ‖vp‖22 ≤ τ ,7

vp denotes the displacement of pixel p, similarly to stAdv). However, INDIVSPT can only be applied for small τ as8

calculating a tight inverse is challenging, because interval splitting (L145) is not feasible. A not-tight inverse can be9

obtained by the relaxation that ‖vp‖22 ≤ τ for all pixels p individually. The Wasserstein transformation does not use10

interpolations, thus BASESPT is sound (cf. [arXiv:1910.10783]) and DISTSPT/INDIVSPT are not needed.11

Dataset Paper -V -G -V-G

MNIST 0.39 0.39 2.38 2.49
CIFAR10 0.77 4.64 2.48 21.04
ImageNet 0.95 70.66 9.25 75.69

Table 1: Maximum observed errors and without
gaussian blur (G) and without vignetting (V).

R1; Can you show results without vignetting and Gaussian blur?12

Yes. The results for BASESPT (Sec. 6.1) were obtained without these13

techniques (we will clarify this).14

For DISTSPT (Sec. 6.2) the error estimates without vignetting or15

Gaussian blur are shown in Table 1. The setup was the same as in16

Sec. 6.2, but for ImageNet we used 10000 instead of 700000 sam-17

ples. Both, vignetting and Gaussian blur improve the error bound18

significantly. On CIFAR10 and ImageNet vignetting is very impactful19

because the corners of images are rarely black. [13] uses vignetting for20

the same reason. Gaussian blur helps to shrink the errors for images21

particularly sensitive to interpolation, i.e. a chess board.22

For INDIVSPT vignetting is crucial, even for MNIST, as we can make no assumptions for parts that are rotated into23

the image. Thus we need to set these pixels to the full [0, 1] interval (see Fig. 2 in the paper and Fig. 1 here). Without24

Gaussian blur, the verification rate drops from 99.6% to 11.6% on MNIST. We will include details in an appendix.25

Model Correct [11] [11]+V

MNIST 98 86 87
CIFAR10 74 65 32
CIFAR10+V 78 63 23

Table 2: Correct classifications and by the
model and verifications by DeepG [11], with
and without vignetting (V), out of 100 images.

R1, R3; Can you compare to prior work more extensively?26

R1; How would vignetting and Gaussian blur benefit them?27

Yes, we extended [11] (Table 1 in their paper) to include vignetting.28

The results are shown in Table 2. We also trained a CIFAR10 model29

with vignetting (CIFAR10+V) for completeness. While vignetting30

on MNIST slightly helps (+1 image verified) on CIFAR10 it leads to31

a significant drop. Including Gaussian blur into [11] would require32

non-trivial adaption of the method. However, we implemented this for33

interval analysis (on which their method is build) and found no impact34

on results. We will extend the our discussion (L274ff., L312ff.) similar35

to this discussion and more directly compare with our CIFAR10 results36

(App. E). Other related work is either in a fundamentally different setting or subsumed by the discussed works.37

(a) Rotated (b) Original

(c) Inverse

(d) 10× refined inverse

Figure 1: Image with high error. In
(c) & (d): Lower and upper bound.

R3; Does your scalability originate from randomized smoothing? Yes. Meth-38

ods relying on convex relaxation (e.g., [11]) for neural network verification suffer39

from accumulation of overapproximation and the slow runtime. While we still use40

interval analysis for DISTSPT and INDIVSPT to bound the interpolation error,41

we circumvent both problems by verifying with randomized smoothing.42

R3; Can your method be applied to combinations of transformations? Yes,43

Theorem 3.2 can be applied to composable transformations, that is ψβ ◦ ψγ =44

ψβ+γ (L92-93). In Sec. 4.1 we consider the case where this holds approximately.45

Unfortunately, as rotations R and translations T do not commute, ψβ := Rβ1
◦46

Tβ2,β3
is not composable, i.e. ψβ ◦ ψγ 6= ψβ+γ (L309-311).47

R4; Can you show Figure 2 for a context rich RGB image? Yes, see Fig. 148

for an example from ImageNet. As outlined in L284-285 there are images with49

very large error (> 50). This error stems from the regions where the inverse50

algorithm can’t determine strong constraints on the pixel value, visible as the51

circular pattern. Since the submission we have investigated improvements for52

such images and found partial success by replacing the circular vignette with an53

adaptive mask based on the local quality of the inverse. We will supplement the54

paper with example images and further discussion.55


