
Thank you for all your comments. Our responses are detailed below, and we will incorporate them in the final paper.1

Reviewer 1: Variable number of comparisons k. To simplify notation and analysis, it’s standard in the BTL literature2

to assume that pairs are compared a fixed number k times (see [10] or [12]). As explained in lines 150-152, “if k varies3

between players so that i and j play ki,j = kj,i games,” the data Z can be normalized accordingly for our algorithm.4

The bandwidth h can be altered, e.g., to use k′ = min{i,j}∈G(n,p) ki,j in place of k in equation (8). This would yield5

corresponding theoretical guarantees with k′. We will clarify this in the final paper. One could also carry out the long6

analysis in [10] (used in Lemma 3) and our analysis while keeping track of the ki,j’s, and derive a corresponding h that7

yields finer bounds. We decided to omit this due to space constraints.8

Reviewer 1: Ad-hoc steps in experiments. We have already explained all the details needed to run all our experiments9

in the paper. Perhaps the reviewer missed these details. Please see lines 150-151 and 238-246 for the precise values and10

choices used to execute our algorithm, e.g., h = 0.3n−1/4. On the other hand, we had not mentioned that we chose the11

constant 0.3 in h, and the level of smoothing (“. . . game is counted as 20 games . . . ”), by eyeballing when the densities12

in Figure 1 looked ‘smooth.’ Moreover, our qualitative results and trends in section 4 remain the same for a range of13

values around 0.3 and 20 (e.g., 0.4 or 30). We will clarify these points in the final paper.14

Reviewer 1: Future directions and minor comments. The minor corrections and clarifications will be made in the15

final paper. Thank you very much for suggesting future research avenues pertaining to Bayesian or MDL approaches16

and density estimation based on mutual fund performances.17

Reviewer 2: Interpreting skill PDFs. We assume a lower bound on our skill PDFs over [δ, 1] in a neighborhood of 118

(see line 114). This implies that maxi αi ≈ 1 with high probability for large n (see (31) in supplementary materials).19

Intuitively, we are re-normalizing all skill parameters so that the maximum one is essentially 1. So, if there are just two20

teams with skills δ and 2δ, these values will be re-normalized to 0.5 and 1. Since maxi αi ≈ 1, it is reasonable for the21

uniform skill PDF to put more mass on larger intervals, i.e., the uniform skill PDF is interpretable. Thus, we do not see22

any immediate advantage of using logits. In Figures 1c and 1f, “World” and “English” have different skill PDFs but23

similar skill scores, because different PDFs can have the same KL divergence to the uniform PDF. This artifact remains24

even if we use logits. On a separate note, since the logits ωi = log(αi) are i.i.d. with PDF Pω(t) = etPα(e
t), when δ25

is constant and h < δ, we have an estimator P̂∗2 (t) = etP̂∗(et) for Pω if desired. By substitution, E
[∫

(P̂∗2 − Pω)2
]

26

≤ (1 + δ)E
[∫

(P̂∗ − Pα)2
]
. Therefore, the upper bound in Theorem 3 also holds for MSE estimation of logit PDFs.27

Reviewers 3 & 4: Why not estimate skill score directly from α̂1, . . . , α̂n (instead of estimating skill PDF Pα)?28

We outline several reasons to estimate Pα: (i) If one seeks to estimate a specific functional of Pα, e.g., moments or29

variance, it is possible to estimate this directly from α̂1, . . . , α̂n. (This is still nontrivial because careful analysis is30

needed to prove consistency of estimation based on noisy pairwise comparisons.) However, Pα contains information31

about all such functionals and provides a lot more qualitative information as shown in Figure 1. Since different32

functionals are needed for different applications, a good estimate of Pα rather than just samples is very useful. Our33

main contribution is showing that the entire smooth density Pα can be estimated from α̂1, . . . , α̂n as well as if we had34

access to the true α1, . . . , αn. (ii) The dual characterization of TV distance and the Cauchy-Schwarz inequality give:35

T , supPα,‖f‖∞≤1E
[
(
∫
fdP̂∗ −

∫
fdPα)

2
]
≤ supPα

E
[
(
∫
|P̂∗ − Pα|)2

]
≤ 3 supPα

E
[∫

(P̂∗ − Pα)2
]
, where the first36

sup is over Pα and all functions f bounded by 1. Thus, the bound in Theorem 3 holds for T . So, by estimating Pα, we37

obtain uniform guarantees on estimating any bounded statistic of the form E[f(α)], which includes all moments. (iii)38

We believe differential entropy h(Pα) is an excellent overall skill score, and standard non-parametric estimators for it in39

the literature (e.g., integral, resubstitution, or splitting data estimators) require an estimate of Pα first to plug in. (Also,40

quantization theory shows that discrete “entropy of the empirical distribution” of α̂1, . . . , α̂n, with uniform binning, is41

a poorer estimate of h(Pα)− log(bin size).) (iv) Philosophically, we believe that skill levels of players, like height or42

weight, exhibit a distribution of values, and a tournament contains samples from this distribution. Hence, the “right”43

skill score is based on Pα rather than the realizations α1, . . . , αn. We will elaborate on these points in the final paper.44

Reviewer 3: “Skill” vs. “exciting” vs. “competitive”. We will clarify that the differential entropy based “overall skill45

score” measures variation of skills, not the actual skills of players, in the final paper. We used “exciting” sparingly in the46

paper, but agree that it may not precisely capture what we mean. So, we will change or clarify it in technical discussions47

in the final paper. We have also sparingly referred to tournaments with high overall skill scores as “competitive,”48

because many teams have similar skill parameters and game outcomes are less predictable. This usage seems reasonable49

and we have retained it. We also agree that closely matched teams may have many non-competitive games, and our50

overall skill score is indeed an “average measure” which may not capture these low probability events.51

Reviewer 4: Theorem statements. Using the phrase “sufficiently large” is standard practice in mathematical statistics52

(see, e.g., [10]), and it has a very precise meaning. “Sufficiently large n (or constant c)” means that “there exists a53

constantA such that for all n ≥ A (or c ≥ A).” Here, the values ofAmay depend on other constant problem parameters,54

and they can be deduced from our proofs. For example, in Theorem 1, the constant c15 ≥ 2c4/(δ
√
pk), where c4 is the55

universal constant from Lemma 3 (which is Theorem 3.1 in [10]). Moreover, for “large constants,” we already mention56

which parameters A depends on in the paper. Since we do not derive sharp values of A, it is not illustrative to include57

them in theorem statements. However, our theorem statements are rigorous; e.g., they directly imply big-O style results.58


