Estimation of Skill Distribution from a Tournament
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Abstract

In this paper, we study the problem of learning the skill distribution of a population
of agents from observations of pairwise games in a tournament. These games
are played among randomly drawn agents from the population. The agents in our
model can be individuals, sports teams, or Wall Street fund managers. Formally, we
postulate that the likelihoods of outcomes of games are governed by the parametric
Bradley-Terry-Luce (or multinomial logit) model, where the probability of an agent
beating another is the ratio between its skill level and the pairwise sum of skill
levels, and the skill parameters are drawn from an unknown, non-parametric skill
density of interest. The problem is, in essence, to learn a distribution from noisy,
quantized observations. We propose a surprisingly simple and tractable algorithm
that learns the skill density with near-optimal minimax mean squared error scaling
as n~ 17, for any € > 0, so long as the density is smooth. Our approach brings
together prior work on learning skill parameters from pairwise comparisons with
kernel density estimation from non-parametric statistics. Furthermore, we prove
information theoretic lower bounds which establish minimax optimality of the
skill parameter estimation technique used in our algorithm. These bounds utilize
a continuum version of Fano’s method along with a careful covering argument.
We apply our algorithm to various soccer leagues and world cups, cricket world
cups, and mutual funds. We find that the entropy of a learnt distribution provides
a quantitative measure of skill, which in turn provides rigorous explanations for
popular beliefs about perceived qualities of sporting events, e.g., soccer league
rankings. Finally, we apply our method to assess the skill distributions of mutual
funds. Our results shed light on the abundance of low quality funds prior to the
Great Recession of 2008, and the domination of the industry by more skilled funds
after the financial crisis.

1 Introduction

It is a widely-held belief among soccer enthusiasts that English Premier League (EPL) is the most
competitive amongst professional leagues even though the likely eventual winner is often one of
a handful of usual suspects [1,2]. Similarly, the Cricket World Cup in 2019 is believed to be the
most exciting in the modern history of the sport, and ended with one of the greatest matches of all
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Table 1: Comparison of our contributions with prior works. The notation O and Q hide poly(log(n))
terms, and € > 0 is any arbitrarily small constant.

Estimation problem  Loss function Upper bound Lower bound
Smooth C* skill PDF  MSE O(n_~1+5) (Theorem 3) ~ Q(n~')[5,9]
BTL skill parameters  relative £°°-norm O(n=1?) [10] Q(n‘l/ 2) (Theorem 1)
BTL skill parameters ~ ¢!-norm O(n=1/2) [10] Q(n="'/?) (Theorem 2)

time [3,4]. But is any of this backed up by data, or are they just common misconceptions? In this
work, we answer this question by quantifying such observations, beyond mere sports punditry and
subjective opinions, in a data-driven manner. We then illustrate that a similar approach can be used to
quantify the evolution of the overall quality and relative skills of mutual funds over the years.

To this end, we posit that the population of agents in a tournament, e.g., EPL teams or mutual
fund managers, has an associated distribution of skills with a probability density function (PDF)
P, over R, . Our goal is to learn this P,. Traditionally, in the non-parametric statistics literature,
cf. [5], one observes samples from the distribution directly to estimate P, . In our setting, however,
we can only observe extremely noisy, quantized values. Specifically, given n individuals, teams,
or players participating in a tournament, indexed by [n] £ {1,...,n}, let their skill levels be
@, i € [n], which are sampled independently from P,,. We observe the outcomes of pairwise games
or comparisons between them. More precisely, for each i # j € [n], with probability p € (0, 1],
we observe the outcomes of £ > 1 games, and with probability 1 — p, we observe nothing. Let
G(n,p) denote the induced ErdGs-Rényi random graph on [n] with edge {i,j} € G(n,p) if games
between ¢ and j are observed. (Note that G(n, p) is independent of oy, . . ., ) For {3, j} € G(n,p),
let Z,,(i,7) € {0,1} denote whether j beats i, i.e., value 1 if j beats ¢ and 0 otherwise, in game
m € [k]. By definition, Z,, (i, j) + Zn(j,1) = 1. We assume the Bradley-Terry-Luce (BTL) [6,7] or
multinomial logit model [8] where:

N N Oéj
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independently of the outcomes of all other games. Our objective is to learn P, from the observations
{Zm(3,7) : {i,5} € G(n,p), m € [k]}, instead of a;,i € [n] (as in traditional statistics [5]). For
a given, fixed set of a;, % € [n], learning them from pairwise comparison data {Z,, (¢, 7) : {i,j} €
G(n,p), m € [k]} has been extensively studied in the recent literature [10-12]. Nevertheless, this
line of research does not provide any means to estimate the underlying skill distribution P,,.

Contributions. As the main contribution of this work, we develop a statistically near-optimal and
computationally tractable method for estimating the skill distribution P, from a subset of pairwise
comparisons. Our estimation method is a two-stage algorithm that uses the (spectral) rank centrality
estimator [11, 12] followed by the Parzen-Rosenblatt kernel density estimator [13, 14] with carefully
chosen bandwidth. We establish that the minimax mean squared error (MSE) of our method scales as
O(n*”/ (1)) for any P, belonging to an n-Hélder class. Thus, if P, is smooth (C>°) with bounded

derivatives, then the minimax MSE is O(n‘HE) for any € > 0; see Theorem 3 for details. Somewhat
surprisingly, although we do not directly observe «;,¢ € [n], this minimax MSE rate matches the
minimax MSE lower bound of 2(n 1) for smooth P,, even when «;,i € [n] are observed [5,9].

As a key step in our estimation method, we utilize the rank centrality algorithm [11, 12] for estimating
a;, 1 € [n]. While the optimal learning rate of the rank centrality algorithm with respect to relative
2-loss is well-understood [10—12], the optimal learning rates with respect to relative /> and ¢! -losses
are not known since we only know upper bounds [10], but not matching minimax lower bounds. In
Theorems 1 and 2, we prove minimax lower bounds of Q(n_l/ 2) with respect to both relative >
and ¢'-losses. These bounds match the learning rates of the rank centrality algorithm obtained in [10]
with respect to both £°° and ¢*-losses, and hence, identify the optimal minimax rates. We derive these
information theoretic lower bounds by employing a recent variant of the generalized Fano’s method
with covering arguments. (Our main technical results are all delineated in Table 1.)

Finally, we illustrate the utility of our algorithm through four experiments on real-world data: cricket
world cups, soccer world cups, European soccer leagues, and mutual funds. Intuitively, a concentrated



skill distribution, i.e., one that is close to a Dirac delta measure, corresponds to a balanced tournament
with players that are all equally skilled. Hence, the outcomes of games are random or unpredictable.
On the other hand, a skill distribution that is close to uniform suggests a wider spread of players’
skill levels. So, the outcomes of games are driven more by skill rather than luck (or random chance).
We, therefore, propose to use the negative entropy of a learnt skill distribution as a way to measure
the “overall skill score,” because negative entropy captures distance to the uniform distribution.
For cricket world cups, we find that negative entropy decreases from 2003 to 2019. Indeed, this
corroborates with fan experience, where in 2003, Australia and India dominated but all other teams
were roughly equal, while in 2019, there was a healthy spread of skill levels making many teams
potential contenders for the championship. In soccer, we observe that the EPL and World Cup have
high negative entropy, which indicates that most teams are competitive, and thus, it is very difficult to
predict outcomes up front. Lastly, the negative entropy of US mutual funds decreases significantly
during the Great Recession of 2008, and we see flatter skill distributions post 2008. This reveals that
mutual funds became more competent to avoid being weeded out of the market by the financial crisis.

It is worth mentioning that there are several reasons to estimate P, rather than the individual skill
levels o, . . ., ay,. Although specific functionals of P,, e.g., moments or variance, may be directly
estimated from estimates of skill levels, estimating P, simultaneously recovers information about
all such functionals. Indeed, it can be shown that MSE guarantees for estimating P, yield uniform
guarantees on estimating bounded statistics of the form E[f(«)] for functions f : R, — R. Since
different functionals are pertinent for different applications, a good estimate of the skill distribution
P, is very useful. For example, we utilize negative entropy of P, to define overall skill scores.
Standard non-parametric plug-in estimators for entropy in the literature, e.g., integral, resubstitution,
or splitting data estimators [15], require an estimate of P, to compute entropy. Therefore, in the
context of this work, estimating P, is eminently desirable.

Related work. A long line of related work [5-14, 16-33] pertaining to measuring the overall skill
levels in tournaments, non-parametric density estimation, the BTL and related models, classical algo-
rithms to estimate BTL model parameters, and modern non-asymptotic analyses of such algorithms
are presented and discussed in [34, Section 1] due to space constraints.

Notational preliminaries. We briefly introduce some relevant notation. Let N £ {1,2,3,...}
denote the set of natural numbers. For any n € N, let S,, denote the probability simplex of row
probability vectors in R™, and S,, «,, denote the set of all n x n row stochastic matrices in R™*". For
any vector x € R” and any ¢ € [1, 00}, let ||z||; denote the ¢?-norm of z. Moreover, log(-) denotes
the natural logarithm function with base e, 1{-} denotes the indicator function that equals 1 if its
input proposition is true and 0 otherwise, and [-] denotes the ceiling function. Finally, we will use
standard Bachmann-Landau asymptotic notation, e.g., O(-), €(-), ©(-), where it is understood that
n — oo, and tilde notation, e.g., O(-), Q(-), ©(-), when we neglect poly(log(n)) factors and problem
parameters other than n.

2 Estimation algorithm

Overview. Our interest is in estimating the skill PDF P, from noisy, discrete observations {Z,, (i, j) :
{i,7} € G(n,p), m € [k]}. Instead, if we had exact knowledge of the samples «;,% € [n] from
P,, then we could utilize traditional methods from non-parametric statistics such as kernel density
estimation. However, we do not have access to these samples. So, given pairwise comparisons
{Zmi,j) : {i,5} € G(n,p), m € [k]} generated as per the BTL model with parameters «;,7 €
[n], we can use some recent developments from the BTL-related literature to estimate these skill
parameters first. Therefore, a natural two-stage algorithm is to first estimate «;,i € [n] using the
observations, and then use these estimated parameters to produce an estimate of P,. We do precisely
this. The key challenge is to ensure that the PDF estimation method is robust to the estimation error
in v, ¢ € [n]. As our main contribution, we rigorously argue that carefully chosen methods for both
steps produces as good an estimation of P, as if we had access to the exact knowledge of «;, i € [n].

Setup. We formalize the setup here. For any given d,¢,b € (0,1) and n,L1,B > 0, let P =
P(0,€,b,m, L1, B) be the set of all uniformly bounded PDFs with respect to the Lebesgue measure
on R that have support in [0, 1], belong to the n-Hélder class [5, Definition 1.2], and are lower
bounded by b in an e-neighborhood of 1. More precisely, for every f € P, f is bounded (almost
everywhere), i.e., f(z) < Bforall z € [0,1]; fis s = [n] — 1 times differentiable, and its sth



derivative f(*) : [§,1] — R satisfies | f®)(z) — f()(y)| < Li|x — y|?~* for all z,y € [6,1]; and
f(x) > bforall z € [1 —¢,1]. As an example, when 7 = 1, P denotes the set of all Lipschitz
continuous PDFs on [, 1] that are lower bounded near 1. Furthermore, we define the observation
matrix Z € [0, 1]™*™, whose (7, j)th entry is:

0, 1=17.
Estimation error. It turns out that 7 is a sufficient statistic for the purposes of estimating a;,7 € n
[10, p.2208]. For this reason, we shall restrict our attention to all possible estimators of P, using Z.
Specifically, let P be set of all possible measurable and potentially randomized estimators that map
Z to a Borel measurable function from R to R. Then, the minimax MSE risk is defined as:

Ruse(n) £ o sup E{ /R (P(m) —Pa(x)>2dx] 3)

where the expectation is with respect to the randomness in Z as well as within the estimator. Our
interest will be in understanding the scaling of Rusg(n) as a function of n and 7. In the sequel, we
will assume that the parameters k, p, d, €, b can depend on n, and all other parameters are constant.

Step 1: Estimate «;,7 € [n]. Given the observation matrix Z, let S € R™*™ be the “empirical
stochastic matrix” whose (4, j)th element is given by:

1

o 200.3). i#3,
.. LN A np
Vi j € [n], S(i,5) 2 L @
1——» Z(@,r), i=3j.
2npr=1

As shown in [34, Proposition 3], it is straightforward to verify that S € S, «, (i.e., S is row
stochastic) with high probability when p = Q(log(n)/n). Next, inspired by the rank centrality
algorithm in [11, 12], let 7, € S,, be the invariant distribution of S, given by:

. A {invariant distribution of S such that 7, = 71,5, S € Spxn, )

T = e
* any randomly chosen distribution in S,, , S ¢ Snxn

where when S € S,,«,,, an invariant distribution always exists and we choose one arbitrarily when it

is not unique. Then, we can define the following estimates of o, . .., «,, based on Z:
vien], a2 2= 6)
||7T* Hoo

where 7, (i) denotes the ith entry of 7, for i € [n].

Step 2: Estimate P,. Using (6), we construct the Parzen-Rosenblatt (PR) kernel density estimator

~

P*:R — R for P, based on &1, ..., &, (instead of aq, ..., «a,) [13,14]:
~ 1 & & —x
Vz €R, P*(z) & — K| — 7
rer P S a( M) )
where i > 0 is a judiciously chosen bandwidth parameter (see the proof in [34, Appendix B.2]):

1 1 =
h = v max 0 —, 1 ( 0g(n)> ()
67T (pk) =02 n

for any (universal) constant v > 0, and K : [—1,1] — R is any fixed kernel function with certain
properties that we explain below.

For any s € N U{0}, the function K : [—1,1] — R is said to be a kernel of order s, where we
assume that K (z) = 0 for [z| > 1, if K is (Lebesgue) square-integrable, [, K(z)dz = 1, and
Jz*'K(z)dz = O forall i € [s] when s > 1. Such kernels of order s can be constructed using
orthogonal polynomials as expounded in [5, Section 1.2.2]. We will additionally assume that there
exists a constant Ly > 0 such that our kernel K : [—1,1] — R is Lo-Lipschitz continuous, i.e.,



|K (z) — K(y)| < La|z — y| for all z,y € R. This is a mild assumption since several well-known
kernels satisfy it. For instance, the (parabolic) Epanechnikov kernel Kg(z) £ 3(1 — 2%)1{|z| < 1}
has order s = 1, and is Lipschitz continuous with L, = % [17]. Other examples of valid kernels can
be found in [5, p.3 and Section 1.2.2].

Algorithm, in summary. Here, we provide the ‘pseudo-code’ summary of our algorithm.

Algorithm 1 Estimating skill PDF P, using Z.
Input: Observation matrix Z € [0, 1]™*" (as defined in (2))
Output: Estimator P* : R — R of the unknown PDF P,
Step 1: SKkill parameter estimation using rank centrality algorithm
1: Construct S € S,,«y, according to (4) using Z (and p and n)
2: Compute leading left eigenvector 7, € S,, of S in (5) > 7, is the invariant distribution of .S
3: Compute estimates &; = 74 (1) /||7x||oo fori =1, ..., n via (6)
Step 2: Kernel density estimation using Parzen-Rosenblatt method
4: Compute bandwidth h via (8) (using p, k, §, n, and n)
5: Construct P* according to (7) using &y, ..., &y, h, and a valid kernel K : [-1,1] = R
6: return P*

With fixed § € (0,1), n > 0, and a valid kernel K : [-1, 1] — R, and given knowledge of & € N and
p € (0, 1] (which can also be easily estimated), Algorithm 1 constructs the estimator (7) for P, based
on Z. In Algorithm 1, we assume that S € S, «,,, because this is almost always the case in practice.
Furthermore, if k varies between players so that ¢ and j play k; ; = k;,; games for i # j, we can
re-define the data Z (i, j) to use k; ; instead of k in (2), and utilize an appropriately altered bandwidth
h. For example, we can use k' = min{,»’j}eg(n’p) k; j in place of k in (8) to define h, which would
yield theoretical guarantees akin to Theorem 3 with k’. The computational complexity of Algorithm 1
is determined by the running time of rank centrality, e.g., if the spectral gap of S is ©(1) and we use
power iteration (cf. [35, Section 7.3.1], [36, Section 4.4.1]) to obtain an O(n"r’) €2-approximation of
74, then Algorithm 1 runs in O(n? log(n)) time. We refer readers to [34, Appendix B.1] for further
intuition regarding Algorithm 1.

3 Main results

We now present our main results: an achievable minimax MSE for the P, estimation method in
Algorithm 1, and minimax lower bounds on estimation of the skill parameters «;,4 € [n] from Z
(i.e., Step 1 of Algorithm 1) for any method. This collectively establishes the near-optimality of our
proposed method as 17 — o0, i.e., as the density becomes smooth (C*°). To this end, we first establish
minimax rates for skill parameter estimation, and then derive minimax rates for PDF estimation.

Tight minimax bounds on skill parameter estimation. To obtain tight P, estimation, it is essential
that we have tight skill parameter estimation. Hence, we show that the parameter estimation step
performed in (5) has minimax optimal rate. Specifically, we define the “canonically scaled” skill
parameters ™ € S,, with ith entry given by:

Q4

n

€))

Building upon [10, Theorem 3.1], the ensuing theorem portrays that the minimax relative £°°-risk of

estimating (9) based on Z is (:)(n’l/ 2) (see Table 1). For simplicity, we will assume throughout this
subsection on skill parameter estimation that ¢, p, and k are ©(1).

Theorem 1 (Minimax Relative £°°-Risk). For sufficiently large constants c14, c15 > 0 (which depend
on 6, p, and k), and for all sufficiently large n € N:

o % — x| } [m—wn ] log(n)
— < mf Ssu E - < Ssu E - 0| C
log(n)v/n ~ & poep [ Il | = mer | Il )= V7%

where the infimum is over all estimators T € S,, of ™ based on Z, and 7, € Sy, is defined in (5).




The proof of Theorem 1 can be found in [34, Appendix C.3]. Theorem | states that the rank centrality
estimator 7, achieves an extremal Bayes relative /°°-risk of O(n’l/ 2), and no other estimator can
achieve a risk that decays faster than (n~1/2). In the same vein, we show that the minimax (relative)
¢'-risk (or total variation distance risk) of estimating (9) based on Z is also ©(n~'/2) (see Table 1).

Theorem 2 (Minimax ¢!'-Risk). For sufficiently large constants c17,c1z > 0 (which depend on 6, p,
and k), and for all sufficiently large n € N:

c . . . ¢
o < iuf sup E[IF —x|,] < sup E[|7 — 7] < .

log(n)yn = & p.ep P.€P vn

Theorem 2 is established in [34, Appendix C.4]. The upper bounds in Theorems | and 2 follow
from [10, Theorems 3.1 and 5.2] after some calculations, but the lower bounds are novel contributions.
We prove them by first lower bounding the minimax risks in terms of Bayes risks in order to
circumvent an involved analysis of the infinite-dimensional parameter space P. In particular, we set
P, € P to be the uniform PDF over [4, 1], denoted unif([d, 1]) € P. We then lower bound the Bayes
risks using a recent generalization of Fano’s method [18,19] (cf. [5,37]), which was specifically
developed to produce such lower bounds in the setting where the parameter space is a continuum,
e.g., [0, 1], instead of a finite set [38-41]; see [34, Appendices C.1 and C.2].

The principal analytical difficulty in executing the generalized Fano’s method is in deriving a tight
upper bound on the mutual information between 7 and Z, denoted I(7; Z) (see [42, Definition 2.3]
for a formal definition), where the probability law of 7 is defined using P, = unif([d,1]). The
ensuing proposition presents our upper bound on I (7, Z).

Proposition 1 (Covering Number Bound on Mutual Information). For all n > 2, we have:

1 (1-05)? 1
I(m; Z) < inlog(n) + 7 (2+5+ (5> kpn .

Proposition 1 is proved in [34, Appendix A.2]. We note that although standard information inequali-
ties, e.g. [40, Equation (44)], typically suffice to obtain minimax rates for various estimation problems,
they only produce a sub-optimal estimate I(7; Z) = O(n?) in our problem, as explained at the end
of [34, Appendix A.2]. So, to derive the sharper estimate I (7; Z) = O(nlog(n)) in Proposition 1,
we execute a careful covering number argument that is inspired by the techniques of [43] (also see
the distillation in [44, Lemma 16.1]).

We make two further remarks. Firstly, it is worth juxtaposing our results with [10, Theorem 5.2]
and [12, Theorems 2 and 3], which state that the minimax relative £2-risk of estimating 7 is ©(n~/2).
This result holds under a worst-case skill parameter value model as opposed to the worst-case prior
distribution model of this paper. Secondly, both Theorems 1 and 2 hold verbatim if P is replaced by
any set of probability measures with support in [4, 1] that contains unif([4, 1]).

Tight minimax bound on skill PDF P, estimation. We now state our main result concerning the
estimation error for F,. In particular, we argue that the MSE risk of our estimation algorithm (see
(7)) scales as O(n ="/ (1) for any P, € P.

Theorem 3 (MSE Upper Bound). Fix any sufficiently large constants co, c3 > 0 and suppose that p >
colog(n)/(6°n), b > c3+/log(n)/n, € > 5log(n)/(bn), and lim,, o 6~ (npk)~1/2log(n)'/? =
0. Then, for any Lo-Lipschitz continuous kernel K : [—1,1] — R of order [n]| — 1, there exists
a sufficiently large constant c12 > 0 (that depends on v, n, B, Ly, Lo, and K) such that for all
sufficiently large n € N:

Ruse(n) < Psaug)]E{/R (ﬁ*(x) - Pa(x))de} < c1 max{ (52;)+ ,1} (logrfn)>+ .

Theorem 3 is established in [34, Appendix B.2]. We next make several pertinent remarks. Firstly, the
condition p > ¢3log(n)/(6°n) is precisely the critical scaling that ensures that G(n, p) is connected
almost surely, cf. [45, Theorem 8.11], [46, Section 7.1]. This is essential to estimate a, ..., a, in
Step 1 of Algorithm 1, since we cannot reasonably compare the skill levels of disconnected players.
Secondly, while P* can be negative, the non-negative truncated estimator P+ () = max{P*(z), 0}

achieves smaller MSE risk than P*, cf. [5, p.10]. So it is easy to construct good non-negative



estimators. Thirdly, there exists a constant c¢;3 > 0 (depending on 7, L;) such that for all sufficiently
large n € N, the following minimax lower bound holds, cf. [20, Theorem 6], [5, Exercise 2.10]:

. 2 1\ =i
Ruse(n) > inf wpq/@M@&@0¢42m() (10)
R n

Pon(:) P,eP

where the infimum is over all estimators Pan : R — R of P, based on aq, ..., a,, and the first
inequality holds because the infimum in (3) is over a subset of the class of estimators used in the
infimum in (10); indeed, given ay, ..., ay,, one can simulate Z via (1) and estimate P, from Z.
Thus, when 7 = 1, Theorem 3 and (10) show that Rysg(n) = O(n~'/2) and Ryse(n) = Q(n=2/3).
Likewise, when (n — oo and) P, is smooth, i.e., infinitely differentiable with all derivatives bounded
by L1, Theorem 3 holds for all > 0, and an 2(n ') lower bound analogous to (10) holds [9]. Letting
e = (n+ 1)1, these results yield the first row of Table 1. Fourthly, we note that similar analyses to
Theorem 3 can be carried out for, e.g., Nikol’ski and Sobolev classes of PDFs, cf. [5, Section 1.2.3].
Lastly, it is worth mentioning that BTL models can also be parametrized using logit parameters
w; = log(a;), @ € [n], which are drawn independently from the PDF P, (z) = e*P,(e”), z € R.
When ¢ is ©(1), it can be shown that the MSE of the estimator Py (z) = e*P*(e®), z € R for
P, is upper bounded by Theorem 3. Therefore, our analysis of Theorem 3 also holds for estimating
distributions of logit parameters.

We emphasize that the key technical step in the proof of Theorem 3 is the ensuing intermediate result.
Proposition 2 (MSE Decomposition). Fix any sufficiently large constants cs, c3,cg,co > 0 and

suppose that p > calog(n)/(6°n), b > c3/log(n)/n, € > 5log(n)/(bn), and lim, ., 61
(npk)~'/%log(n)/? = 0. Then, for any P,, € P, any Lo-Lipschitz continuous kernel K : [~1,1] —

R, any bandwidth h € (0, 1] with h = Q(max{1/(5v/pk), 1}\/log(n)/n), and any sufficiently large
n € N:

E[ /R (73*(93) B Pa(x))zdx} < 9F [ /R (ﬁ;n () Pa(a;))de]+CS?;L§]E{maX|di - aﬂ +;‘§ﬁ

i€[n]

where If’;n : R — R denotes the classical PR kernel density estimator of P, based on the true

samples o, . . . , o, (if they were made available by an oracle) [13, 14]:
R 1 & o — T
VzeR, Ph.(z)2 — ) K(— . 11
x,a(x)nh;<h> (1

The proof of Proposition 2 can be found in [34, Appendix A.3]. This result decomposes the MSE

between P* (with general h) and P, into two dominant terms: the MSE of estimating P, using (11),
which can be analyzed using a standard bias-variance tradeoff [5,20] (see [34, Lemma 4]), and the
squared ¢*°-risk of estimating «s, . . ., a;, using (6). To analyze the second term, we use a relative
£°°-norm bound from [10, Theorem 3.1] (see [34, Lemma 3]); the same bound was also used to
obtain the upper bound in Theorem 1.

4 Experiments

We apply our method to several real-world datasets to exhibit its utility. Specifically, Algorithm
1 produces estimates of skill distributions. In order to compare skill distributions across different
scenarios as well as capture their essence, it is desirable to compute a single score that holistically
measures the variation of levels of skill in a tournament.

Skill score of P,. Intuitively, a delta measure (i.e., all skills are equal) represents a setting where all
game outcomes are completely random; there is no role of skill. On the other hand, the uniform PDF
unif([0,1]) (assuming § is very small) typifies a setting of maximal skill since players are endowed
with the broadest variety of skill parameters. We refer readers to [16] for a related discussion.
Propelled by this intuition, any distance between P,, and unif([0, 1]) serves as a valid score that is
larger when luck plays a greater role in determining the outcomes of games. Therefore, we propose
to use the negative differential entropy of P, as a score to measure skill in a tournament [42,47]:

JMwéA&mbwum&:M&wﬁwﬂﬂ (12)
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Figure 1: Plots 1a, 1b, Ic, 1g, and 1h illustrate the estimated PDFs of skill levels of cricket world
cups, soccer world cups, European soccer leagues, and US mutual funds, respectively. Plots 1d, le,
1f, and i illustrate the corresponding estimated negative differential entropies of these PDFs.

This is a well-defined and finite quantity that is equal to the Kullback-Leibler (KL) divergence between
P, and unif(]0, 1]) (see [42, Definition 1.4] for a formal definition). To estimate —h(P,,) from data,
we will use the simple resubstitution estimator based on P* and &, . . ., &, [15,48]. (Note that other
more sophisticated entropy estimation methods demonstrate the same trends in the sequel.)

Algorithmic choices. In all our simulations, we assume that = 1, use the Epanechnikov kernel

KE, and set the bandwidth to 2 = 0.3n~'/4; indeed, % is typically chosen using ad hoc data-driven
techniques in practice [5, Section 1.4].

Data processing. The data is available in the form of wins, losses, and draws in tournaments. For
simplicity, we ignore draws and only utilize wins and losses. To allow for ‘regularization’ in the small
data regime, we apply Laplace smoothing so that between any pair of players, each observed game is
counted as 20 games, and 1 additional win is added for each player; this effectively means that p = 1.

We remark that the constant 0.3 to define £ and the level of smoothing mentioned above are chosen
to generate ‘smooth’ PDFs in Figure 1. Moreover, the qualitative results and trends in the sequel
remain the same for a range of values around the constant 0.3 and the chosen level of smoothing.

Cricket world cups. We utilize publicly available data from Wikipedia for international (ICC)
Cricket World Cups held in 2003, 2007, 2011, 2015, and 2019. Each world cup has between n = 10
to n = 16 teams, with each pair of teams playing 0, 1, or (rarely) 2 matches against one another. We
learn the skill distributions for each world cup separately as portrayed in Figure 1a. The corresponding
negative entropies are reported in Figure 1d. As can be seen, there is a clear decrease in negative



entropy reaching close to 0 in 2019. This elegantly quantifies sports intuition about the 2019 World
Cup having some of the most thrilling matches in the modern history of cricket [3,4].

Soccer world cups. Again, we use publicly available data from Wikipedia for FIFA Soccer World
Cups in 2002, 2006, 2010, 2014, and 2018. Each world cup has n = 32 teams, with each pair
of teams playing 0, 1, or (rarely) 2 matches. Figures 1b and le depict the skill distributions and
associated negative entropies of soccer world cups over the years. It is evident that the negative
entropies have remained roughly constant and away from 0. This suggests that game outcomes in
world cups have remained unpredictable over the years—very consistent with soccer fan experience.

European soccer leagues. Yet again, we use publicly available data from Wikipedia for the English
Premier League (EPL), Spanish La Liga, German Bundesliga, French Ligue 1, and Italian Serie A in
the 2018-2019 season. Each league has between n = 18 to n = 20 teams, with every pair of teams
playing 0, 1, or 2 times against each other (excluding ties). Figure 1c illustrates the skill PDFs of
these leagues and the 2018 FIFA World Cup. As expected, we observe that the skill levels of world
cup teams are concentrated in a smaller interval closer to 1. Figure 1f sorts the negative entropies of
the skill PDFs and recovers an intuitively sound ranking of these leagues. Indeed, many fans believe
that EPL has better “quality” teams than other leagues [1,2], and this observation is confirmed by
Figure lc. Figure 1c reveals that EPL has higher negative entropy than other leagues since its skill
PDF has the tallest and narrowest peak, presumably because EPL only contains high quality teams
with little variation among them. This example shows how our algorithm can be used to compare
different leagues within the same sport (or even different sports).

US mutual funds. Our final experiments are calculated based on data obtained through [49] from
CRSP US Survivor-Bias-Free Mutual Funds Database that is made available by the Center for
Research in Security Prices (CRSP), The University of Chicago Booth School of Business. We
consider n = 3260 mutual funds in this dataset that have monthly net asset values recorded from
January 2005 to December 2018. These values are pre-processed by computing monthly returns (i.e.,
change in net asset value normalized by the previous month’s value) for all funds, which provide a
fair measure of monthly performance. Then, we perceive each year as a tournament where each fund
plays £ = 12 monthly games against every other fund, and one fund beats another in a month if it has
a larger monthly return. Figures 1g and 1h depict the skill PDFs obtained by applying our algorithm
to the win-loss data (produced by the method above) every year, and Figure 11 presents the associated
negative entropies. Clearly, 2017 and the Great Recession in 2008 were the times where negative
entropy was maximized and minimized, respectively, in Figure 1i. Figures 1g and 1h unveil that the
skill PDF is much more spread out in 2008 compared to 2017, which contains a large peak near 0.
So, as expected, far fewer lowly skilled funds existed during the economic recession in 2008. These
observations elucidate the utility of our algorithm in identifying and explaining trends in other kinds
of data, such as financial data.

5 Conclusion

In this paper, we proposed an efficient and minimax near-optimal algorithm to learn skill distributions
from win-loss data of tournaments. Then, using negative entropy of a learnt distribution as a skill
score, we demonstrated the utility of our algorithm in rigorously discerning trends in sports and other
data. In closing, we suggest that a worthwhile future direction would be to develop minimax optimal
algorithms that directly estimate entropy, or other meaningful skill scores, from tournament data.

Broader Impact

The analysis of our algorithm, which forms the main contribution of this work, is theoretical in
nature, and therefore, does not have any foreseeable societal consequences. On the other hand,
applications of our algorithm to real-world settings could have potential societal impacts. As outlined
at the outset of this paper, our algorithm provides a data-driven approach to address questions
about perceived qualities of sporting events or other competitive enterprises, e.g., financial markets.
Hence, a potential positive impact of our work is that subjective beliefs of stakeholders regarding the
distributions of relative skills in competitive events can be moderated by a rigorous statistical method.
In particular, our method could assist sports teams, sports tournament organizers, or financial firms
to corroborate existing trends in the skill levels of players, debunk erroneous myths, or even unveil



entirely new trends based on available data. However, our work may also have negative consequences
if utilized without paying heed to its limitations. Recall that Step 1 of Algorithm 1 estimates BTL skill
parameters of agents that participate in a tournament. Since the BTL model is a well-known approach
for ranking agents [6,7], it should be used with caution, as with any method that discriminates among
agents. Indeed, the BTL model only takes into account wins or losses of pairwise games between
agents, but does not consider the broader circumstances surrounding these outcomes. For example,
in the context of soccer, the BTL model does not consider the goal difference in a game to gauge
how significant a win really is, or take into account the injuries sustained by players. Yet, rankings of
teams or players may be used by team managements to make important decisions such as assigning
remunerations. Thus, users of algorithms such as ours must refrain from solely using rankings or skill
distributions to make decisions that may adversely affect individuals. Furthermore, on the modeling
front, it is worth mentioning that the BTL model for pairwise comparisons may be too simplistic in
certain real-world scenarios. In such cases, there are several other models of pairwise comparisons
within the literature that may be more suitable, e.g., the Thurstonian model, cf. [21], or more general
stochastically transitive models, cf. [31]. We leave the analysis of estimating skill distributions or
related notions for such models as future work in the area.
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