- Thanks for the helpful feedback. We got a clear sense of where more clarification would be helpful.
- 2 General Discussion Our work is part of the following larger and important discussion within the NeurIPS community:
- 3 To what solution do neural nets (trained w. GD) converge to in the overparameterized setting? This discussion was
- 4 reignited by two recent NeurIPS papers (Gunasekar et al. 2017) and (Vaskevicius et al. 2019). They showed that in a
- 5 certain context, continuous GD updates converge to sparse solutions. In a recent COLT paper (Amid, Warmuth 2020)
- this was related to a particular MD algorithm: if the edges of a linear neuron are doubled (as in Fig. 2), then continuous
- 7 GD on this network simulates the unnormalized exponentiated gradient algorithm (EGU). EGU is the classical MD
- algorithm (with the log link) and there is a long history of results showing that it does well when the solution is sparse.
- 9 Previously it was thought that GD cannot take advantage of the sparsity of the solution.
- 10 In this paper we show that the reach of GD is even much farther: Any CMD update can be simulated by another CMD
- provided a certain reparameterization function exists. We give many reparameterization examples in the paper and in
- particular, we develop a family of MD updates (using the \log_{τ} link) that lie between GD and EGU using vanilla GD
- 13 (by means of a reparameterization).
- What is the surprising insight? The structure of the network is key! Much research has been done in exploring multi
- layer nets with fully connected (FC) layers. In particular, wide FC layers have been investigated. For example the
- NeurIPS paper, Arora et al. "On Exact Computation with an Infinitely Wide Neural Net." NeurIPS 19, shows that an
- infinitely wide neural net behaves like a kernel method.
- Our research leads us in a different direction in that a linear neuron in which the edges are doubled (Fig. 2) can exploit
- sparsity. In particular, combined with some well known bounds for any kernel method, this shows that GD on the thin
- 20 network of Fig. 2. can learn certain sparse problems exponentially faster than any kernel method. We believe that this
- 21 discussion is central to neural net research and important to the NeurIPS community.
- We will add more context along the above to the final version. We will also smoothen the transitions and give more
- extensive definitions as suggested by the reviewers. The discussion of duality is important for the optimization context.
- We will relegate much of that to the appendix in exchange for giving more motivation for the main results of the paper.
- Reviewer #2 "given that this work is being submitted to NeurIPS, I don't see enough of a relationship to artificial
- 26 neural networks... Describing the specifics of using this work to help the neural processing world feels as though it
- 27 would be more appropriate."
- ²⁸ Please note that many similar theoretical work such as (Gunasekar et al. 2017) and (Vaskevicius et al. 2019)
- 29 have appeared before in NeurIPS. That is, NeurIPS has always been one of the top venues for publishing results on
- learning theory and optimization. The current submission is a theoretical work, but also has practical implications for
- understanding the training dynamics of deep neural networks. Therefore, we would like to encourage Reviewer #2 to
- cast their judgment solely based on the quality of the paper and significance of the theoretical results and defer the
- concerns about the relevance of the work to the NeurIPS community to the ACs.
- Reviewer #4 Lack of definitions: We will add the missing definitions and improve the flow.
- *Meaning of 'independent variables:* We refer to independence by means of elementary calculus. For independent variables, a variable in an equation may have its value freely chosen without considering values of the other variables.
- Motivation of the dual form: The dual form of MD is extremely important for efficient implementation of updates
- and analyzing the worst case regret bounds. We will make the motivation clear. We will also improve the write up to
- ease the transition between the sections.
- "Why should we care about reparameterized CMD as GD?"
- For a long time, many MD updates such as EGU had been considered fundamentally different than GD (multiplicative
- 42 vs. additive). Therefore, the EGU update was considered to be unrealizable by additive updates such as backprop. We
- show that EGU (and many other CMD) updates are realizable "exactly" via backprop on a reparameterized network.
- 44 Following (Amid, Warmuth 2020), we believe that the discretized updates will closely mimic the original updates.
- This has important implications for implementing these updates via GD in the existing platforms (such as TF).
- Reviewer #5 "the authors show that CMD can be presented as minimizing a trade-off between the loss and a
- 47 Bregman momentum. ... I am unsure about the significance of this contribution.
- 48 Prior to this work, CMD was motivated as the limit point of MD when the step-size goes to zero. Alternatively, we
- motivate CMD as the minimization of a functional objective. This novel view of CMD is useful for deriving worst case
- 50 regret bounds in the continuous-time, which we defer to future work. This also allows a novel approach for deriving
- MD updates by directly discretizing the functional objective (please see Appendix C for more details).