A Dual Form of Bregman Momentum

The dual form of Bregman momentum given in can be obtained by first forming the dual
Bregman divergence in terms of the dual variables w*(¢) and w¢ and then taking the time derivative:

Dr(w(t), wo) = Dp- (g, w (1) = o (F* () — F* (" (1) — f*(w" (1) (g — " (1)

— —F*(w* (1) + £ (w" () w"(t) + (w*(t) — w) Hp (w" (1)) (1)
= (w*(t) —wy) Hp-(w*(t) w'(1),

where we use the fact that F* (w* (t)) = f*(w*(t))T " (¢).

B Constrained Updates and Reparameterization

We first provide a proof for Proposition|l} Then, we prove Theorem

Proposition The CMD update with the additional constraint w(w(t)) = 0 for some function
Y R 5 R™ st {w € C| w(w(t)) = 0} is non-empty, amounts to the projected gradient update

Fw() = =Py(w(t) VL(w(t) & f*(w"(t) = —Py(w(®) " VLof* (w*(t), (4

where Py, .= I; — JJ (Jd,H;lJJ)_le,H;l is the projection matrix onto the tangent space of
F atw(t) and Jy,(w(t)). Equivalently, the update can be written as a projected natural gradient
descent update

W(t) = ~ P} (w(t)) Hy (w(t) VL(w(t) & @"(t) = — Py Hp!(w* () VLo f* (w" (1)).(I3)

Proof of Proposition[I] We use a Lagrange multiplier A(¢) € R™ in (6) to enforce the constraint
P(w(t)) =0forallt >0,

min { D (uw(t),w,) + L(w(®)) + A(0) (D) }. (23)

Setting the derivative w.r.t. w(t) to zero, we have
Fw(®) + VawL(w(1)) + Jy(w(t)) "A(t) =0, (24)
where Jy,(w(t)) is the Jacobian of the function ) (w(¢)). In order to solve for A(t), first note that

Y(w(t)) = Jy(w(t)) w(t) = 0. Using the equality f(w(t)) = Hp(w(t))w(t) and multiplying
both sides by Jy (w(t))H " (w(t)) yields (ignoring t)

LV + I (w) Hy () VL(w) + Ty (w) Hy ()] (w)A(t) = 0.

Assuming that the inverse exists, then
_ -1 _
A= —(Jy(w)Hy (w)J,} (w)) " Jy(w)Hg " (w)VL(w).

Plugging in for A(t) yields (15). Multiplying both sides by H r(w) and using f(w) = Hp(w)w
yields (14). O

Theorem [3}  The constrained CMD update coincides with the reparameterized projected
gradient update on the composite loss,

9(u(t)) = —Pyog(u(t)VuL o q(u(t)),

where Pyoq = I), — JJOQ (onqH(_;lJJOq) _1J¢qu51 is the projection matrix onto the tangent
space at u(t) and Jyoq(u) = J| (w)Jy(w).

11



Proof of Theorem 3] Similar to the proof of Proposition|l] we use a Lagrange multiplier A(t) € R™
to enforce the constraint v o g(u(t)) = 0 for all ¢ > 0,

min { Do (w(t), ws) + Log(u(t)) + A(H) woa(u(n) |

Setting the derivative w.r.t. u(t) to zero, we have
9(w (1)) + VaLog(w(t)) + J o (u(t)A(t) = 0,
where Jyoq(u(t)) = J (u)Vi(w(t)). In order to solve for A(t), we use the fact that
)
)

b0 q(u(t) = Jyoy(u(t)) ult
plying both sides by Jysoq (u(t)

Jpoq(u) U+ onq(w)Hal(u)VLoq(u) + onq(w)Hél(w)JJOq(u))\(t) =0.

The rest of the proof follows similarly by solving for A(t) and rearranging the terms. Finally, applying
the results of Theorem [2] concludes the proof. O

— 0. Using the equality 9(u(t)) = Hg(u(t))u(t) and multi-
HZ'(u(t)) yields (ignoring t)

C Discretized Updates

In this section, we discuss different strategies for discretizing the CMD updates and provide examples
for each case.

The most straight-forward discretization of the unconstrained CMD update (1)) is the forward Euler
(i.e. explicit) discretization, given in (3. Note that this corresponds to a minimizer of the discretized
form of @ with a step size of h, except that the initial weight vector is w; instead of w. That is,

argmin {1/h (Dp(w,w,) — Dp(ws, w,) ) + L(w)} .
w ———
=0
An alternative way of discretizing is to apply the approximation on the equivalent natural gradient
form (L1)), which yields
Wyl — =-hH, (ws) VL(ws).

Despite being equivalent in continuous-time, the two approximations may correspond to different
updates after discretization. As an example, for the EGU update motivated by f(w) = log w link,
the latter approximation yields

Wst1 = Ws © (1 - th('wS)) )

which amounts to approximating the exponential factor exp(—nV L(w;) in the EGU update by its
Taylor expansion (1 — h VL(ws)).

The situation becomes more involved for discretizing the constrained updates. As the first approach,
it is possible to directly discretize the projected CMD update

f(Wsi1) — f(ws) = —h Py(ws)VL(wy) .

However, note that the new parameter w,,11 may fall outside the constraint set Cy, = {w €

Cly (w)) = 0}. As aresult, a Bregman projection [Shalev-Shwartz et al., 2012] into C,, may need
to be applied after the update, that is

W1 = argmin Dp(w, Weiq) . (25)
wEeECy,

As an example, for the normalized EG updates with the additional constraint that w'1 =1, we have
Py(w) = I; — 1w and the approximation yields

log (Ws41) — log (ws) = —h (VL(w,) — 1 Ey, [VL(wy)]),

where Eq,, [VL(w,)] = w/]VL(w,). Clearly, w,;1 may not necessarily satisfy w/,;1 = 1.
Therefore, we apply N
ws—&-l - % 9
[wstalla
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which corresponds to the Bregman projection onto the unit simplex using the relative entropy
divergence [Kivinen and Warmuth, [1997]).

An alternative approach for discretizing the constrained update would be to first discretize the
functional objective with the Lagrange multiplier and then (approximately) solve for the update.
That is,

w1 = argmin {1/h (Dp(w,ws) — Dp(ws, w,) ) + L(w) + )\Tw(w)} .
w T
Note that in this case, the update satisfies the constraint ¢)(w,+1) = 0 because of directly using the
Lagrange multiplier. For the normalized EG update, this corresponds to the original normalized EG
update in [Littlestone and Warmuth, [1994],
w; ®exp (— h VL(wy))
|lws ® exp ( - hVL(ws)) (.

Ws+1 =

Finally, it is also possible to discretized the projected natural gradient update (15)). Again, a Bregman
projection into C,, may need to be required after the update, that is,

Wei1 — ws = —h Py(wy) " Hy' (ws)VEL(w(t)),
followed by (23). For the normalized EG update, the first step corresponds to

s

Wer1 = Wy @ (1 — h(VL(w,) — 1Ky [VL(wS)])) :

which recovers to the approximated EG update of [Kivinen and Warmuth|[1997]. Note that w;rl 1=1
and therefore, no projection step is required in this case.
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