
A Dual Form of Bregman Momentum

The dual form of Bregman momentum given in (10) can be obtained by first forming the dual
Bregman divergence in terms of the dual variables w⇤(t) and w

⇤
0 and then taking the time derivative:
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•
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>
HF⇤(w⇤(t))

•
w

⇤
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=
�
w

⇤(t) � w
⇤
0

�>
HF⇤(w⇤(t))

•
w

⇤
(t) ,

where we use the fact that
•

F
⇤(w⇤(t)) = f

⇤(w⇤(t))>
•
w

⇤
(t).

B Constrained Updates and Reparameterization

We first provide a proof for Proposition 1. Then, we prove Theorem 3.

Proposition 1. The CMD update with the additional constraint  
�
w(t)

�
= 0 for some function

 : Rd ! Rm s.t. {w 2 C| 
�
w(t)

�
= 0} is non-empty, amounts to the projected gradient update

•

f
�
w(t)

�
= �P (w(t))rL(w(t)) &

•

f
⇤(w⇤(t)) = �P (w(t))> rL�f⇤ (w⇤(t)) , (14)

where P := Id � J
>
 

�
J H

�1
F J

>
 

��1
J H

�1
F is the projection matrix onto the tangent space of

F at w(t) and J (w(t)). Equivalently, the update can be written as a projected natural gradient
descent update

•
w(t) = �P

>
 (w(t))H�1

F (w(t))rL(w(t)) &
•
w

⇤
(t) = �P H

�1
F⇤ (w⇤(t))rL�f⇤(w⇤(t)).(15)

Proof of Proposition 1. We use a Lagrange multiplier �(t) 2 Rm in (6) to enforce the constraint
 (w(t)) = 0 for all t � 0,

min
w(t)

n •

DF (w(t),ws) + L(w(t)) + �(t)> (w(t))
o
. (23)

Setting the derivative w.r.t. w(t) to zero, we have
•

f(w(t)) + rwL(w(t)) + J (w(t))>�(t) = 0 , (24)

where J (w(t)) is the Jacobian of the function  (w(t)). In order to solve for �(t), first note that
•

 (w(t)) = J (w(t))
•
w(t) = 0. Using the equality

•

f(w(t)) = HF (w(t))
•
w(t) and multiplying

both sides by J (w(t))H�1
F (w(t)) yields (ignoring t)

⇠⇠⇠⇠⇠
J (w)

•
w + J (w)H�1

F (w)rL(w) + J (w)H�1
F (w)J>

 (w)�(t) = 0 .

Assuming that the inverse exists, then

� = �
�
J (w)H�1

F (w)J>
 (w)

��1
J (w)H�1

F (w)rL(w) .

Plugging in for �(t) yields (15). Multiplying both sides by HF (w) and using
•

f(w) = HF (w)
•
w

yields (14).

Theorem 3. The constrained CMD update (14) coincides with the reparameterized projected
gradient update on the composite loss,

•
g
�
u(t)

�
= �P �q(u(t))ruL � q(u(t)) ,

where P �q := Ik � J
>
 �q

�
J �qH

�1
G J

>
 �q

��1
J �qH

�1
G is the projection matrix onto the tangent

space at u(t) and J �q(u) := J
>
q (u)J (w).
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Proof of Theorem 3. Similar to the proof of Proposition 1, we use a Lagrange multiplier �(t) 2 Rm

to enforce the constraint  � q(u(t)) = 0 for all t � 0,

min
u(t)

n •

DG(u(t),us) + L�q(u(t)) + �(t)> �q(u(t))
o
.

Setting the derivative w.r.t. u(t) to zero, we have
•
g(w(t)) + ruL�q(w(t)) + J

>
 �q(u(t))�(t) = 0 ,

where J �q(u(t)) := J
>
q (u)r (w(t)). In order to solve for �(t), we use the fact that

•

 � q(u(t)) = J �q(u(t))
•
u(t) = 0. Using the equality

•
g(u(t)) = HG(u(t))

•
u(t) and multi-

plying both sides by J �q(u(t))H�1
G (u(t)) yields (ignoring t)

J �q(u)
•
u + J �q(w)H�1

G (u)rL�q(u) + J �q(w)H�1
G (w)J>

 �q(u)�(t) = 0 .

The rest of the proof follows similarly by solving for �(t) and rearranging the terms. Finally, applying
the results of Theorem 2 concludes the proof.

C Discretized Updates

In this section, we discuss different strategies for discretizing the CMD updates and provide examples
for each case.

The most straight-forward discretization of the unconstrained CMD update (1) is the forward Euler
(i.e. explicit) discretization, given in (5). Note that this corresponds to a minimizer of the discretized
form of (6) with a step size of h, except that the initial weight vector is ws instead of w0. That is,

argmin
w

n
1/h

�
DF (w,ws) � DF (ws,ws)| {z }

=0

�
+ L(w)

o
.

An alternative way of discretizing is to apply the approximation on the equivalent natural gradient
form (11), which yields

ws+1 � ws = �hH
�1
F (ws) rL(ws) .

Despite being equivalent in continuous-time, the two approximations may correspond to different
updates after discretization. As an example, for the EGU update motivated by f(w) = logw link,
the latter approximation yields

ws+1 = ws �
�
1 � hrL(ws)

�
,

which amounts to approximating the exponential factor exp(�⌘rL(ws) in the EGU update by its
Taylor expansion (1 � hrL(ws)).

The situation becomes more involved for discretizing the constrained updates. As the first approach,
it is possible to directly discretize the projected CMD update (14)

f
�
ews+1

�
� f

�
ws

�
= �hP (ws)rL(ws) .

However, note that the new parameter eww+1 may fall outside the constraint set C := {w 2
C| 

�
w)

�
= 0}. As a result, a Bregman projection [Shalev-Shwartz et al., 2012] into C may need

to be applied after the update, that is

ws+1 = argmin
w2C 

DF (w, ews+1) . (25)

As an example, for the normalized EG updates with the additional constraint that w>1 = 1, we have
P (w) = Id � 1w> and the approximation yields

log
�
ews+1

�
� log

�
ws

�
= �h

�
rL(ws) � 1Ews [rL(ws)]

�
,

where Ews [rL(ws)] = w
>
s rL(ws). Clearly, ews+1 may not necessarily satisfy ew>

s+11 = 1.
Therefore, we apply

ws+1 =
ews+1

k ews+1k1
,
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which corresponds to the Bregman projection onto the unit simplex using the relative entropy
divergence [Kivinen and Warmuth, 1997].

An alternative approach for discretizing the constrained update would be to first discretize the
functional objective with the Lagrange multiplier (23) and then (approximately) solve for the update.
That is,

ws+1 = argmin
w

n
1/h

�
DF (w,ws) � DF (ws,ws)| {z }

=0

�
+ L(w) + �

>
 (w)

o
.

Note that in this case, the update satisfies the constraint  (ws+1) = 0 because of directly using the
Lagrange multiplier. For the normalized EG update, this corresponds to the original normalized EG
update in [Littlestone and Warmuth, 1994],

ws+1 =
ws � exp

�
� hrL(ws)

�

kws � exp
�

� hrL(ws)
�
k1

.

Finally, it is also possible to discretized the projected natural gradient update (15). Again, a Bregman
projection into C may need to be required after the update, that is,

ews+1 � ws = �hP (ws)
>
H

�1
F (ws)rL(w(t)) ,

followed by (25). For the normalized EG update, the first step corresponds to

ws+1 = ws �
⇣
1 � h

�
rL(ws) � 1Ews [rL(ws)]

�⌘
,

which recovers to the approximated EG update of Kivinen and Warmuth [1997]. Note that w>
s+11 = 1

and therefore, no projection step is required in this case.
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