
We thank the reviewers for their detailed feedback. We’re glad that the reviewers thought our general identification1

theorem is sound and interesting (R1, R2, R3), found our work is creative (R2), and see VDE as an elegant solution to2

satisfy the independence conditions required in theorem 1 (R3).3

To address clarity concerns, we have adopted the reorganization suggestions of section 2 from R2. This should move the4

"identification comparison with other control function methods" closer to theorem 1 which clarifies one of R1’s main5

concerns by connecting our work to Guo and Small 2016. This would also surface the error analysis of GCFN from6

section 2.3 and appendix A.7 that R1 requests and provide the more intuitive structure of section 2 that R3 requests.7

[R1 + R3 : limited experimental evidence | R3, toy experiments] We do not know of any established benchmarks8

for causal effect estimation with IVs. We briefly discuss our evaluation here. Section 3.1 shows GCFN can handle9

assumptions that existing methods like CFN, 2SLS, and DeepIV cannot. Then, as demonstrated below and in section10

3.3 in the paper, GCFN performs on par or better than DeepIV and DeepGMM on high-dimensional simulated data11

from each paper [1, 2] respectively. Thus, GCFN is competitive on data that satisfies the assumptions required by12

DeepIV and DeepGMM while being applicable to data generated with non-additive outcome processes [1, 2].13

[Additional evaluation of GCFN] Due to reviewers’ concern about toy experiments, we present further evaluation14

of GCFN on simulated data with a high-dimensional IV. We use the data generating process given in DeepGMM [2], a15

recent state of art method. We ran GCFN with 10 different random seeds and report results for κ = 0.3, chosen based16

on mean outcome MSE. We report results for DeepGMM and DeepIV as reported in [2]. GCFN performs competitively17

with an effect MSE of 0.077 ± 0.022 compared to DeepGMM’s 0.07 ± 0.02 and DeepIV’s 0.11 ± 0.00. Effect18

MSE for κ ∈ {0.2, 0.4} were similarly within standard errors of DeepGMM’s performance and better than DeepIV [1].19

[R1 + R3, hard to gauge assumptions | realism of assumptions] Solving VDE exactly guarantees reconstruction20

(A1) and marginal independence ẑ ⊥ ε. A strong IV (A2), intuitively, is one that is able to set treatment to any value21

given any fixed confounder value. Joint independence requires assumptions on the treatment process like additivity.22

Additivity is common in the economics literature and strong IV is an assumption that can be reasoned about using23

domain expertise: for e.g. can college proximity influence a student’s decision to go to college regardless of skill?24

[R1, Theorem 1 and traditional identification results] To clarify, theorem 1 characterizes control functions that25

guarantee identification. We compare GCFN’s identification for an additive treatment process to traditional control26

function identification from Guo and Small (reference 15 in the paper) in the paragraph "New conditions for effect27

identification" in section 2.2. Briefly, a strong IV requires more than the exclusion restriction and relevance properties28

of IVs. For this added assumption, GCFN drops the additive outcome process and the additional conditions on noise29

that CFN requires. We have expanded this discussion in the paper.30

Figure 1: Effect estimation MSE of GCFN in the
MNIST IV experiment above plotted for the corre-
sponding VDE’s reconstruction loss and upper bound
on I(ẑ, ε) (as in derivation in A.2); the lighter the
color, the better the error. Effect MSE is good and
very mildly sensitive to changes in reconstruction or
information for values in 0.3− 0.5 and 2.5− 3.5 re-
spectively. Outside those ranges, effect MSE is more
sensitive and is bad when either quantity is large.

[R1, Section 2.2 is opaque, no analysis] As noted above, we31

have clarified our presentation in section 2.2 and A.7. We briefly32

summarize GCFN here: 1) GCFN’s first stage, VDE, has an ob-33

jective where at optimum, control functions meet condition A1 in34

theorem 1. Similarly, VDE’s decoder leverages treatment process35

assumptions where at optimum joint independence (A3) is satisfied36

(line 187). 2) GCFN then runs a flexible outcome regression on37

the treatment and VDE’s control function to estimate effects. As38

in section 2.3, we analyse GCFN’s effect error in appendix A.7. In39

A.7.1, we show how the two components of VDE, reconstruction40

error and dependence of ẑ on ε, influence effect error in data with41

additive treatment processes. We also give a general bound in A.7.2.42

[R2, I(ẑ, ε) > 0, reconstruction error, GCFN failure cases]43

We thank the reviewer for this suggestion. We will add discussion44

about failures modes of GCFN. We plot the influence of non-zero45

information and reconstruction on effect MSE in fig. 1 using models46

trained on the MNIST IV data above for different κ.47

[R3, Real experiment unconvincing] The reported effect in Nunn et al. (reference [34] in the paper) is a well-known48

result supported by modelling choices informed by domain knowledge. We believe that recovering this effect gives49

evidence that GCFN works well even without strong parametric assumptions used by Nunn et al.50

[R3, Kernel IV, Multidimensional z] We thank the reviewer for the suggestion. We will include a Kernel IV baseline.51

If t is scalar but z is multidimensional, an additive treatment process with a scalar f(z) would be t = g(ε) + f(z). In52

this case a scalar ẑ suffices to capture f(z) and satisfy ignorability.53
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