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In this appendix, we prove Theorem 1, 2, 3, 4 and Corollary 1 in the main paper.

A Regret Lower Bound for Robust Upper Confidence Bound

In this section, we prove Theorem 1 in Section 3, which derives the lower bound of the expected
cumulative regret of robust UCB [4]. First, we recall Assumption 1 in the main paper.

Assumption A.1. Let {Y;};- | be i.i.d. random variables with the finite p-th moment for p € (1, 2).
Let v, be a bound of the p-th moment and y be the mean of Yy,. Assume that, for all 6 € (0,1) and n

number of observations, there exists an estimator }Afn(n, Vp, 0) with a parameter 1) such that

R 1 1-1/p ) 1-1/p
P<Yn>y+l,;/p(mn</é>) ><5, P<y>ynﬂ;/p(mw> <5

n n

Assumption provides the confidence bound of the estimator Y,. Note that Y, = Yn(n, Vp, 0)
requires v, and 0. By using this confidence bound, at round ¢, robust UCB selects an action based on
the following strategy,

a; := arg max {7’}_17& + V;/” (77 ln(t2)/nt_1,a)1_1/p} (A.1)

where 7;_1 , is an estimator which satisfies Assumption with § = t~2 and n;_1 , denotes the
number of times a € A have been selected. Under the strategy (A.T), we prove Theorem 1 in the
main paper.

Theorem A.2. Assume that truncated mean, median of mean, and Catoni’s M estimator are employed
to estimate the rewards. Then, there exists a K -armed stochastic bandit problem for which the regret

L2
of the robust UCB has the following lower bound, for T' > max (10, [:((;;11))} )

E[R7] > Q ((K In(T)) "7 T%) . (A.2)

Proof. The proof is done by constructing a counter example. We construct a /K -armed bandit problem

p—1
) - =1
with deterministic rewards. Let the optimal arm a* give the reward of A = v» (M) !
p—1

1 — .
whereas the other arms provide zero rewards. Note that A < v» (M) ’ < 1 and the estimator
T2

we used satisfies 7, < All[a = a*] for all a since rewards are A or 0 in this MAB problem. Let E;
be the set of events which satisfy

Vﬁn(K—l) ) :L
e N T
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17 IfP(E;) <1/2forsomet € [1,---,T], then, the regret bound is computed as follows,

1 C 1 C 1 C
E[Rr] > JE[R|Ef] = SAE | - nig|Ef| 2 SAE | Y nevalE; (A3)
aF#a* aFta*
1
A T v -
> 5 - v (n(K — 1) In(T))"5 T (Ad)

=1\ o1 p=1\ 521
(1+5%) 2(1+5%)
Hence, if P(E;) < 1/2 for some ¢t € [1,---,T], then, the lower bound holds. On the contrary, if
P(E) > 1/2forallt € [1,--- ,T], then, the proof is done by showing P(a; # a*) > § fort > tg

where
2T 2T
tp := max 1+5(K 1)+ L,T%
(1 + 5%) o
18 Note that T > to holds since 7 > 4L +1 > 1 + 5(12({1) + 2 holds for T > 10 and

p=1\ 21
<1+5 P >
19 T > /T holds. In other words, {t € [1,...,T] : t > to} is not empty.

20 Before showing that P(a; # a*) > % holds, we first check the lower bound. When P(E;) > 1/2

21 holds forallt € [1,---,T],if P(a; # a*) > % holds for ¢ > t, then, the lower bound of the regret
22 can be obtained as follows,

T
AT —t
E[Rr] > AY P(a #a*) > % (A5)
t=to
A 2 2 ;
=" min| [1- - —|T-1,170-T"7%) (A.6)
2 5(K —1) ( p=1) p~1
1455
A 2 2
22min<(1—5—5)T—1,T(1—T—%)> (A7)
23 where the last inequality holds since KX — 1 > 1 and (1 + 5PT_1) pﬁ > 5. Then, by T' > 10,
A 2 2
2min((1—5—5)T—1,T(1—T—%)> (A.8)
AT 1 ;
> min(--7T"11-7"2 (A.9)
2 5
p=t 1
—v¥ (p(K — 1) In(T))"F T% min (5 T Té> (A.10)
1 p=1
= E”% (K — 1)In(T))7 T>. (A.11)
1

1
24 Note that 10 <1- \/ﬁ

25 holds for t > tg.

. Thus, we obtain E[R7] > ((Kln(T))’%l T%), if P(a, # a*) >

1
2

26 The remaining part is to prove that P(a; # a*) > 3 holds for ¢ > t; when P(E;) > 1/2 for all
27t > 0. We mainly prove that, if F, occurs, a; = a* never occurs since the confidence bound cannot
28 overcome the estimation error between sub-optimal arms and optimal arm under the condition of E;.
20 In other words, P (a; # a*|E;) = 1. If P (a; # a*|E;) = 1 holds, then, we can simply show that

1 1
P(a; # a*) > iP(at #+a*|Ey) = 3 (A.12)
30 Now, we analyze the set of event, {a; # a*}, as follows,
p—1 p—1
1 In(t?)\ * 1 In(t?)\ *
{ar#ay= {fa*+yp (7”1()) < Futur (77 n( )) } (A.13)
ata* Nt—1,a* Nt—1,a



2\ 5+ ) 2\ 5
> U{AJerl’ ("hl(t)> <vr <771n(t)) } (A.14)

ata Nt—1,a*
o Fgr < Aand Fopgr =0 (A.15)

2 pT?l p—1 1 2 pT?l
> U {A+yé (”m(t)) §(1+5T)A§y5 (”ln(“> } (A.16)

N4 *
ata* t—1,a

[ (2 comafny {(ee) s (222

a#a*

1 1
2ur-1 Qup—1
- {mﬂ”ln(t)@t—w}l | U §re-1a < —nln(t)
=

aar ((1 +5‘"TTl) A) e

(A.18)
1 1
> { 21/2 nIn(T) < nt—l,a*} ﬂ U Np—1,a < 2V_p_1 ——n1n(to)
DU vy oy
(A.19)
T >t>1 (A.20)
S22 a*} Myt < QTp In(to)
{5(K_1) S ﬂaya o 1) - ) in(T)
(A21)

2T 2T In(tp)
5 { < } NS e < —
S5(K —1) Ly 5%> 71 In(T)

a#a*

31 Let A := {% < nt_l,a*} and B := ¢ 37 o 1,0 < 2T In(to) } Now, we

32 check that A N B contains E; fort > tg := max | 1+ 5(]2(7:1) + ( p271> o ,T%
1+5 7 )77
33 For the set A, if w € E, then,
T
Ng_ 1,0+ =0 —1— Z Ng_14>t—1— N cwe By (A.23)
a#a* (1 + 5PT> P
T 2T T
>tp—1-— - LZ5(K—1)+ o (A.24)
(1+5p7)p’1 (1+5‘“T)”’1
> L, (A.25)
“5(K-1)

34 which implies w € A.

For the set B, we have,




35 By using this fact, we get

2T In(t T
(o) > Y 1. cwE By (A.26)
p=1\ -1 In(7T) p=1\ -1 ’
(1 + 5 ) (1 + 5 ) aF#a*

36 which implies w € B. In summary, w € E; implies w € A N B. Consequently, we have,

1
P(a; # a*) > EP (ar # a*|Ey) (A.27)
> %P(AﬂB\Et) _ % (A.28)
Thus, B
E[R7] > Q ((Kln(T))pT T%) .
37 O

s B Adaptively Perturbed Exploration with A New Robust Estimator

39 B.1 Bounds on Tail Probability of A New Robust Estimator

40 Before deriving the bound of tail probability of a new estimator, we first analyze the property of the
41 influence function ¢ (x). Then, using the property of ¢)(x), we show that the tail probability has an
42 exponential upper bound.

43 Lemma B.1. Forp € (1, 2], assume that a positive constant b, satisfies the following inequality,

B 2 p 17% 2-p 27%
by 2| —= — >1.
: (p - 1> " (p - 1) -
Then, the following inequality holds, for all x € R,

In(1+a+bplz|?) > —In(1 — a4+ bylzf?).

Proof. Let f(x) := 1+ « + b,|x|P. Then, the inequality is represented as In(f(x)) > — In(f(—z)).
Before starting the proof, first, we show that f(z) > 0 by checking min, f(x) > 0. For z > 0,

() =1+b, pzP~t >0.
which is non-zero for all z > 0. Thus, the minimum of f(x) will appear at < 0. For x < 0, its
derivative is

f(@) =1=b,-p(—z)P~ .

44 Then, f'(z) become zero at x = — (pbp)_fil. Thus, the minimum of f(z) is

7 (= W) 7T = 1= ) 7T by () T = 1= (p7P T —p )T (B

) . 9_ 1-2 9_ 2-27126-1
>1- (p*ﬁ _p*F) 2 (p> + (p> (B.2)
p—1 p—1

9 _ 1-2 9_ 2-2 D) s
| lz =) () >, (B3)
—1-p 7T 2p-)2-p)' P+ 2-p) | (B4)
—1-p PTR(p- 1)+ (2P 2 p) D (B.5)
—1—p T (2 p) D >0, (B.6)

P p=2
a5 Note that £ < p~ 2@=D (2 — p)2=D < 1 holds for p € (1,2]. Since f(—x) and f(z) are symmetric
46 to the y-axis, f(—x) is also positive for all x € R.
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By noticing that In(f(z)) > —In(f(—=x)) is equivalent to f(z)f(—x) > 1, We show that the
following inequality holds,

(I4+z+by|zP)(1—x+bylx|P) > 1 (B.7)
b2 |f*P + 2bplafP +1 — 2% > 1 (B.8)
b2la|?P™% + 2b, 2P 1> 0 (. 2 >0). (B.9)

Let us define g(z) := b22%7~2 + 2b,,2P 2 for z > 0. Now, we show that g(z) > 1 holds for z > 0.
First, we analyze the derivative of g(z) computed as follows,

g (2) = 2b,2P72 (by(p — 1)2° + (p — 2)).
Since b, > 0 and 2P~3 > 0, the sign of ¢’(z) is determined by the term (b,(p — 1)2? + (p — 2)),
1

_1
which is an increasing function and, hence, has a unique root at zg := (%) bp ” . In other words,

since (b, (p — 1)2P + (p — 2)) has the unique root at z for z > 0, ¢’(z) also has a unique root at zo
which is the minimum point. Finally,

2 2 —-p 1_% 2 —-p 2_%
—1=b |2 —= D —-1>0.
9(0) @’[<p—1> +<p—1> ] =0

where the last inequality holds by the assumption. Consequently, g(z) — 1 > g (z9) — 1 > 0 holds
and, hence, f(z)f(—x) > 1 holds. The lemma is proved. O

_Pr
2

1—2 22
Corollary B.2. Let b, := [2 (2;”) "4+ (ﬂ) p} . For all x € R, the following inequality

p—1 p—1
holds
In(14+x+bylz|?) > —In(1 — x4+ bylzf?).

Proof. The proof is done by directly applying the Lemma BT with
2 2 -
2-p\'"r  [2-p\*
- |2(222) 4 (2
p—1 p—1

Theorem B.3. Let {Y},};— | be i.i.d. random variable sampled from a heavy-tailed distribution with
a finite p-th moment. Define y := E [Y}] and an estimator as

. " Y,
Kﬂ—fl§:¢< ﬁ) (B.10)
k=1

y
2

O

nor cne
where ¢ > 0 is a constant, and 1) is an influence function which is defined by:

W) = In (bylzP +2+1) cx >0
T Un(plzfr —z+1)7" sz <o

s

1—2 9271~
where by, := [2 (2;17) s (%) p} . Then, for all § > 0,

and

where v, == E [|Y;|"].
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Proof. From the Markov’s inequality,

1—1 1—1 1—1 1—1
P(n ?n>n(y+§)> < exp <—n(y+5)>Elexp (n An>
C C C C

Since ¢ (z) < In (by|z|? + = + 1) holds by its definition, we have

(B.11)

1_l n p
n Y,
E |exp + b, ——%— (B.12)
( c ) 1:[1< env p2(cn117) )]
n Yp
= 1 b B.13
1;[ [ Tt env - pQCp’”] B19
Yy Up "
=1+ —-2L-+b B.14
( + I + p2cpn) ( )
1—1
nor v
gexp< y y+bp2c’;> (B.15)

Combining and (B.13)), we have

1—1 1—1
. no» nor b,V
— < _ pVp
P(Yn y>5)exp< . (y+5)>exp< . Y+ 20,;)
1

The upper bound of P (y -V, > 5) can be obtained by the similar way. Hence we obtain the desired
result. The theorem is proved. O

C Regret Analysis Scheme for General Perturbation
In this section, we prove Theorem 3 and 4 in the main paper under Assumption 2.

C.1 Regret Upper Bounds

To analyze the regret R in the view of expectation, we borrow the notion of filtration {H; : ¢ =
., T} from [2] and [6] where the filtration #; is defined as the history of plays until time ¢ as
follows
Hy={ap, Ry, : =1,...,t}

By definition, H; C Ha C - -+ C Hr_1 holds. Finally, we separates the event {a; = a} into three
groups based on the threshold z, := r, + A, /3 and y, := r4« — A, /3. Finally, for a given reward
estimator 7, 4, let us define the following sets which will be used to partition the event {a; = a}:

Erai={ar=a}, FEra:={fa<2a}, Era:={f14+B14Cra<va}
We separate L , into three subsets:
Bia = By B VB €1
where
Et(la) =FE;.N Efa
Ef(2a) =E,N Ef,’,,, N E~t7a
Et(g;) =FE;qaN Et,a N Eaa

In the following sections, we estimate the upper bound of the probability of the event F; , based on
the decomposition (C.IJ).
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Lemma C.1. Assume that the p-th moment of rewards is bounded by a constant v, < 00, T 4 is a
p-robust estimator of (B10) and F(z) satisfies Assumption 2. Then for any action a € A, it holds

T
(1) bpvp 3¢ 2p—1
;P(Em)<1+exp<2p)(Aa> r< — ).

Proof. Fix arm a € A. Let 7, denotes the smallest round when the arm a is sampled for the k-th
timeie. k=Y /5 I[E;,]. Welet 7o :=0and 7, = T for k > ny(T). Then it is easy to see that for
T <t < Tk+1

1 1t =Tk
]I[Etya] = {0 e (C.2)
Therefore,
T T Th+1
ZIP’(E&)) -3 E []I[Et({)} ZE S IE
t=1 t=1 k=0 t=1+7

(Et,a N E;a)

T—-1 Tk41 R
+ Z E [ > 1Bl N EE,)

=1 t=1+7%

=E
<1+

S
t=1

T-1
S P(E )
k=1

where the last inequality holds by (C2). Also, by the definition of E, , and Theorem

T-1 1-1 00 1-1
. ok bpvp bpvp Ay~
’; P (E7k+17 ) < Z exp ( — + o ) <exp ( 2 ) |, exp | ———5— dx
byv, 3¢\ 71 D i 1 Agz'w
< e el — [ — p—1 b= a7
< Xp(Qd’)(Aa) — exp (—t)tr=1dt ‘-t 30
ppj
= exp bpl/p E Ll“ L
2cP A, p—1 \p—-1
bpvp 3¢\ 71 2p—1
= -— T .
o (5) (22) (55
where the last equality holds by I'(z + 1) = 2T'(z). The lemma is proved. O

Next we estimate Et(2a) From now on, we let p stand for the following ratio
o) = Flg) _P(G<g)
1=F(g) P(G=y9)
where F is a cumulative density function of perturbation G.

Lemma C.2. Assume that the p-th moment of rewards is bounded by a constant v, < 00, Tt 4 is a
p-robust estimator of (B-10) and F(x) satisfies Assumption 2. For any action a € A, it holds

T _p_
2) bpv, F(0) 2p=3 2p—1Y\ (3c\77
;]P’(Et’a><exp<2p){01+l_F(O)+2 r(5=1) (&
6c\ 71 (1 [ c 71 P ¢ \ 7T
(3 {‘F <T () )} (%)

+

Proof. If a = a*, then A, = 0 so the desired result trivially holds. Threfore, we take a € A\ {a*}.
For the convenience of the notation, we write 7 o := 7+_1 ¢ + B:t—1,4G¢,q. Due to the decision rule
of the perturbation method, a; = a implies 7 4 < 7 4 for ' € A. Therefore, it holds

Et,a N Et,a C ﬂ {Ft,a/ S ya} = {Ft,a* S ya} n {Ft,a/ S ya»Va/ 7£ a*}' (C3)
a’eA



90 This fact implies

P (Epa ) By 1) <P ( () {Fra < ya}mt_l) (C4)

a’€A

ot Note that events {7, o« < y,} and {7 o < y,,Va' # a,} are independent if 7{,_, is given. From
92 this fact, (C:4) is equivalent to

P ( m {Fra < ya}|7'it—1> =P (Ptar < Ya|Hi—1)P (Frar < Ya,Va' # ax|Hi1)
a’' €A
P (7tar < YalHi-1)

— 2 — P T's % N reor < \V/ ! _
]P)(ft,a* > ya\th) ({Tt,a > ya} {Tt,a = Ya, VA #a*HHt 1)

93 Since 7¢_1 4+, Bt—1,q+ are already determined under the condition H;_1, we get

Tax — Ti_1 — fa

~ a* — ,a*

P(Frar < YalHi—1) = F .
Bt—l,a*

94 Similarly to (C3)), we can observe that
{7:1‘,,(1* > ya} N {7:1‘,,(1’ < yaava/ 7£ a*} - Et,a* N Et,a (C.5)
95 and this implies
P({Ftar > Yo} N {Frar < 4o V0 # @} He) <P (B 0 Braler) (€O

96 Therefore,

P (Bea 0 Braltles) < 2B (B oo 0 BralHenn) (€7
1= Qi
N Ag
o7 where Qi 4+ 1= F (%) By taking an expectation on both sides, we have,
(2) Q¢ 0 ~ ~
P(E?) =P (EanE.nE.,)<E W]I[Em* NE.NEL]|. (S8
- YWt,a*

98 Now, we set 75 to denote the smallest round when the optimal arm a* is sampled for the k-th time.
99 Then, the summation of the right-hand side of @ overt =1,...,T is bounded as follows,

Q B T— Tk+1 Q B
Z E |: ba” [Et,a* N Et7a N Et,a]:| = Z E Z ba Et,a* N Et,a N Et,a]
17Qta* ] t=7r+1 7Qta*

T—1
E |: Q’rk+1,a*

H[E7k+l PLed N E"'k+17a]:|

kg() 1—- Q‘rk+17a*
T
QTk,a* :|
E|——|.
S ; |:1 - Q‘rk,a*

100 We first compute the upper bound of the conditional expectation E [1627* ’}—[Tk] From the
hoa

101 definition of 74, we have n,, , = kand 3, o = . By using this fact, we get,

E |: QT}C,(I*
1-—- QTk,a*

T
1L
k P

1—1
AT
c ’ 3
K 2\ s
/Rp< - {ra*:p?)}) P(7 € dz) (C.9)

102 We decompose R = I; U, UT; into three intervals where [; := {2 < rg« —%}, Iy = {rg- —% <

103 xgra*—A— s




104 By using the change of variable formula,

k' A,
/11p< p {ra*—x—3}>1[”(f€dx)
ra*—% kl—% Aa
= /_OO p ( . {ra* —x— 3}) fe(x)dx

c e c A,
=z / p(g) fr (Ta* “adT > dg
» JO P

105 where f; is the density function of the measure P(# € dz). Note that the following equality holds by
106 the fundamental theorem of calculus

~ Flg) 7 h(u) F(0)
p(g)_kF(g)_/o lfF(u)du—i_lfF(O)

107 Therefore,

c < Flg) c A,
k:lzlo/o — F(g) A<T“*klég3> %

o0 F(() A,
ol ([ )5 (e e 5w

O (R, w)

c 9 h(u) ) ( c A, )
+ ; ————du | fi | rqr — T~ 3 d C.10
klp/o (/0 1= F(u) [ i 19~ 5 |dg (C.10)
108 From the tail bound of the proposed estimator, we have,
A, . AkTF by,
P (3 S Tax — er,a*> S exp (-30 + 20p (Cll)

10e  Hence we can get the upper bound of the first term in (C.10). Also, by Fubini-Tonelli theorem, we
110 can transform the second term of (C.10) as follows

= [ </ %du> I ( ey )dg
0o ) e0)
L vom) e

A

o0
2\ R
:/ P (ra* P > ) LI (C.12)
0 ' kv 3

P — F(u)
111 Similar to (C.IT)), we have

Aq Ak b
P (ra" - ’ﬁ’rk,a* > klc U+ 3) < exp (—’U, - + pr>

3c 2cP
112 Thus, we obtain the upper bound of (C.12)) as follows

o . c A, h(u)
]P) a* = T'1g,a* Z v 7(:1
[ B (e e e ) e
> AT by h(u)
< ., Pa pVp d
—/0 eXp( YT +2cr>>1—F(u)“
Ak "5 by  exp (—u) h(u)
< R pVp d
_exp( 3c +2cp>/0 1— F(u) Y

A by
< Cexp (—30 + 2pcpp> ’




113

where the last inequality holds due to the assumption on F'

(2). Therefore,
17% A =
/p(k {ra*—x—a} P(7 € dz) < Cexp
I C 3

DGk L b
3c

2cP

(C.13)

1%

F(0) Ak'™F by,
- C.14
1— F(0) ( 3c + 2cP ( )
114 Now we derive the upper bound of the second interval Io = {rq» —
15 F(0) < 1/2,itis easy to see that

116

= % < < rex — %}. Since
B A B
p( p{ra*—x—a}>§2F< ’
c 3 c

A
{ra* —T— a}) (C.15)
3
for x € I, U I3. Hence, for x € Io,
K A,
o — T — — P(r ed
/12p< - {7’ T 3}) (7 x)
Ag
Ta* — 76 klf%
§/ 2F< {T
Ta*—ﬁ

C
3

Aq
S 2P (6 S Tax — TA-,—k)a*) .

117 Similar to (C.I1)), we have

A, ) A5 by,
2P (6 S Tax — T-,—k’a*> S 2exp <_66 + 2P .
Hence, we get the upper bound of the integral on I, as follows,
T 1—1
A , 2p—1
ZQexp —L M < 2exp i) r P .
6c 2cP 2cp p—1
k=1
119 Finally, due to (C:13) again,
kK A,
o —x—— ¢ | P(fed
/13p< . {r x 3}) (7 x)
e’} kl,%
el (]
Tax — 52
a 6

C

118

(C.16)

120

By combining (C.14)), (C.16), and (C.17)
ZE[ QTk(l

T 1—1
Ak TP by
< _ e @ 4 PP
1_Qna*H ]_;{OQXP< 3c * )
F(0) Ak TF by,
TR0 P <_ 3c
T A 1

1-F(0) p—1

<exp<b2pcyf) {C+ FO) }I‘<2p_1;_1




byv. F(0) 21 2p—1Y\ [ 3¢\ 71
< 2P —=+271 [ -—
—eXp(2cp){C+1—F<o>+ }(p—1)<Aa>

T 1—1

kv A,
oF [ -2 _2a )
Py ar (Hpl)

The remaining part is to derive the upper bound of the last term. For T > 2 (f) "' let /_ be the

D

maximal time such that )
1—1 _p_

_ "A
Fl = a1 > (e
6¢ — T\ A,
Then, we have ¢_ as follows,

e

For k > /_, the following inequality holds,

]
|
s

p—1

ya _p_ _p_
121 Note that (AL) < iforT > (Ai) " and F1 (21T (L) ’”1) < 0 from the assumption
122 F(0) < %

123 Therefore,

T 1—1 T 1—1
kT rA, kA,
E 2F | —— | <2/_ E 2F | ——
k=1 ( be > - ' ( be >

T _p_ _p_ _p_ P
c \7! 6c \ Pt 1/ c\r!
P (E(Q)) <T<2|— 2 — —F == .
2 F(Ba)<T<2(5 ) +2(x%, T \A,
t=1 +
124 Thus, the upper bound also holds. By combining this upper bound, the Lemma is proved. O
125 Lastly, we estimate the upper bound of Et(?’a)

126 Lemma C.3. Assume that the p-th moment of rewards is bounded by a constant v, < 00, T4 4 is a
127 p-robust estimator of (B.10) and F(x) satisfies Assumption 2. For any action a € A, it holds

D

T _p_ _p_ 7T _p_
(3) 3c \ P! _ 1 c \ 7! c \7!
;P(EM)S (Aa> {F 1<1_T(Aa) )} +2(Aa>

+

11



128 Proof. Recall 75, from Lemma (C.I). Obviously,
T T
3 n c

S P (Et{j) <Y P (ETk WM ES a)

t=1 k=1
129 Due to the decision rule of the perturbation method and the definition of 75, observe that n,, , = k
130 and B, o = . By the conditioning on ., ,

H )SP(TAT]C SxaaGTk(l>yTTk7HTk)
ﬁ‘l‘k ,a
<P (Gw > Yo~ Ta ’HT,C>
ﬁ‘l‘k a

1-1 1-1
P (GTM > M’H7k> —1-F (A“gc> . (CI8)

P P

131 We first show that the bound holds for T > (Ai) """ and check the case of T < (Ai) pj.

1
1L
k P

P (ETM nES

Tk,Q

D

ForT > 2 (i) ﬁ, let £ be the maximal time such as

A 1/ ¢ \71
<1-—(— .
F< 3c ) s1 T (Aa>

c

_pP_
133 There exists a positive {4 since 1 — % (A—) S % and the assumption F'(0) < % Note that

3¢\ 71 1 1/ ce\m\|""
e Y

A ks 1/ ¢ \5t
— -/ | <=|-= . .
1 F( > )_T( > (C.20)

135 Therefore, by (C.I8), (C.19), and (C.20),

iP(E}k,amEgM) < (( k1_>>

1

[
N

134 and for k > (4

| /\

I/\
'>\

/—/H
’“11

| /\

'>\
/—/H
,_.
/:\ VR
'ﬂ\
7~ N
Plo
&i“
s
N———
——
N
+
[N}
N
Ple
——
Il

1

P
136 ForTSQ(f) e

Se)ere(s) (1) (-12) )

137 Thus, the bound also holds. Consequently, the lemma is proved. O
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138 Finally, we prove Theorem 3 in the main paper.

Theorem C.4. Assume that pth moment of rewards is v,, < co. Consider 7 o is the proposed robust
estimator and the perturbation method with a CDF F'(g). Then, cumulative regret is bounded as

TAZ™? TAZ )1,

139 where Ccp ., r > 0 is a constant dependent on ¢, p, vy, F' and independent on T.

D

Cep,v =T
of 35 e 00
a#a*

pl p
L BorT
+ 1

+ AV

1 1

AV AV

140 Proof. Recall the definition of regret Ry, and the fact P(a; = a) = P(E,) = Z?Zl ]P’(Ef(’g)
141 Hence

3 T

T
ERr] =Y Y AP =a)=> Y Y AP (Egj‘g) (C.21)

ac A t=1 a#a* i=1 t=1

122 By Lemmas|C.I} [C.2] and[C.3]
T 1
M) < bpvp (3c)P\ 1 2p—1
gAaP(Em)Aﬁexp(Qcp) ( X r(o=7 )

143

o 1) 2o () {4 b (30) (8)

p—1
() @)

2 P
#2(3)

+

T 1 _p_ =T 1
@Y - (BT 1) o\ 7
tz:; AIIP <Et7a) - ( Aa F 1 T Aa + + 2 Aa

144

145 Therefore, we can estimate the upper bound of (C.2T)) by combining the above results as follows

ERr] < Y [exp (

5 [ro () o et e (250) (52)”
A (@)

+

() (2 @)

3c)r—1 ﬁ p-t
L B F_1<1_ c ) +Aa>
AVEE TN )],
146 The theorem is proved. O
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147

148

149

150
151

152

153

154

155

156
157

158

159

160

161

C.2 Regret Lower Bounds

Theorem C.5. For0 < ¢ < —2—+—and T > w ’F ( i)’L there exists a
K—1427-T 97T K

K -armed stochastic bandit problem for whlch the regret of APE RE has the following lower bound:

E[Rr] = Q (KléTiF—l (1 - ;{)) (C.22)

Proof. We construct a K-armed multi-armed bandit problem with deterministic rewards of which
the regret analysis presents the regret bound (C:22). Let the optimal arm a* give the reward of

1—1
A = %c% (%) " F~!'(1— L) whereas the other arms provide zero rewards. Note that
_1_ P
A€ [0,1] for 7 > =D p=1(1 — L)|77 and the estimator becomes 7, = Alla = a*]
271
since there is no noise. Let E; be the set of events which satisfy
Z Nt.a S cr
a#a*
If P(E;) < 1/2 holds for some ¢t € [1,--- ,T)], then the regret bound is computed as follows

1 T 1+ 1
E[Rr] > SE[R:|Ef] > “a=t (K~ ) r T F (1 - K)

2
hence it satisfies (C.22). Otherwise, if P(E;) > 1/2 holds for all ¢ € [1,--- ,T7, it is sufficient to
prove P(a; # a*) > 1/8. Then, it holds

d T cr 1
_ _ _ 1-1d 1
_t§:1AIP(at_a*)z SA_ 16(K—1) pTP? F <1— )

K-1

and we get the desired result since 0 < ¢ < ——.
K—142p-1

Now, the remaining part is to prove that P(a; # a*) > 1/8 holds. First, we observe that

IP)(at 7é a*) =P U {’Fa* + Bt,a* Gt,a* S 7211 + Bt,aGt,a}’
aFa*

> P (Etfl)P U {’f'a* + Bt,a* Gt,a* < 2A < 'f'a + ﬁt,aGt,a} ‘Etfl

aFa*
1 A
> §E Pl Gt < 3 Hi1,E1 | P U {2A < B4,aGra} [Heo1, Bi—1 | |Era
t,a aFa*
1 A((1—)T) ">
—cC P
> -E|P (Gt,a* < — Ht—l,Et—1>
2 c
x P U {QA < Bt,aGt,a} ‘/Htfh Ei_1 | |Ei—1
aFa*
where the last inequality holds due to 741 4+ > (1 — ¢)T provided E;_;. Since ¢ < Ki’l%,
K—1427-

we have,
stamh (g8 (1) 13
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11
162 Hence, P (Gt g < A=) P
’ c

’Ht_l,Et_1> > 1 — 4 so that

1 1
P(a; # a*) > 3 (1 - K) E|P U {2A < B1uGra} | Hi1, Ero1 | |Era
aF#a*
163 Observe that
P U {2A < B4,0Gy,a} ‘Ht—l, Ei 1
aFa*
2A
>1-P( N {Gm < 5} [Hio1, Bia
ata* t,a
21 =5
>1-[[ F <("“=“) )
c
aF#a*
L1y KL
x \Ng— a p
>1-|F QAZa;éa(tl’) ’
(K -1)
164 where the last inequality holds by the log-concavity of F'. Under F;_4, note that
; =
Yo TES | Y1 Y mieta < (K —1)7 ()7
aFa* aFa* aFa*

165 which implies

-3 1 T =3 1
(K 1) <F<2Ac ”((K-l)) )ZI_K

rara2 3 (1- 1) (1- (- 1) )24

167 sincel — % > Zand1— (1— %)K_l > 1 hold for K > 2 and the theorem is proved. O

166 Therefore, we get

s D Regret Bounds of Specific Perturbations

Corollary D.1. Suppose G follows a Weibull distribution with a parameter k < 1 with A\ > 1 with
¢ > 0. Then, the problem dependent regret bound is
AT\
I ( S )] A,
cr—1

1
Cc7p7,,p7F n <(3C)\)p> p-l
16 The problem independent regret bound is, E [Ry] = © (A% K" 5T%In (K)%)

E[Rr] <O | > =™ A
aF#a* A£71 a

170 The minimum rate is achieved atk =1, E[Ry| = © (Kl_%T% In (K))
Proof. The CDF of a Weibull distribution with k£ < 1 is given as

Flz)=1—exp (_ (i)k)

15



Then, its inverse is

Then,

- p—1
Joatl = AP
TAZ "

171 Thus, we compute C as follows,

% h(z)exp (—2) B ko2
K 1-F(z) dz_/o 1 G

(A—=1)k A=DF (A=D1
I'(2) —k
< =A—-1
“(A=1)k ( )
For (627~ {—F‘l ( cr 1 )] . , we have,
AP N

(GC)ﬁ _Ffl Cﬁ ot =0
AT NSV

172 since the support of x is (0, 00). Then, the problem dependent regret bound becomes,

E[Rr] <> [exp (%’C”}f) {Cl + 11’(1220) Lo 1}F (2;)—11) ((ZsAczp

a#a*
_p_
(6¢)7 i e
+ 0 |-F! —
AET! TAZ™ n

bpVp k| o2e=l 2p—1 (3c)P\ P
exp(w> [(/\—1) +2p1+1}r ) (5
21\ 1FeD 1
TAE™ cP \ P 1

In ( C# ) + (Aa) + Aa

Ccp vy, F (30)\)? ﬁ TAg%l E(p—1)
< P:Vp, |
<0 (Z <L ( - o2 A

aFa* A£71

16

k /“Z“exp(z)dz KD (k) _ T(k+1)
0

D.1)

(D.2)

(D.3)

D.4)

(D.5)

(D.6)

(D.7)



173 The problem independent regret bound can be obtained by choosing the threshold of the minimum
1
174 gapas A = ¢ (K/T) "% In(K)*.

. 2\ 15D
Cepyv AP\ 7T TAFT
E[Rr]< > B ((32) ) ln< — )] + AT (D.8)
ata* Ag>A AL a cp—1
Ccpu F (36)\)p ﬁ TA% ﬁ
o e In|=——= +AT (D.9)
Ar—T A cp—1
Conp T N b \15CET
< Cewvnt T7 e GNTILE [ (K ()0 ) |77 (@.10)
K7 In(K)*»-D K7 In(K)*—D
+ KT In(K)* ®.11)
! ZrE)
Copopp- K'5Ts 1+ 2= In(K)
<ot BT +c(3A)%K1*%T% {( k(p 1)) : } D.12)
In (K)®e-D In(K)*»-1
+CK1_%T% ln(K)% (D.13)
p In (K)F@-1 , , .
<0 [ (e gi-irs (WD :0((0/\)mK1—5T%1n(K)i). (D.14)
In(K)*e-1

175 Consequently, the lower bound is simply obtained by Theorem so we can conclude that regret
176 bound is tight. The corollary is proved. O

Corollary D.2. Suppose G follows a generalized extreme value distribution with a parameter with
0 < < 1land ) > 1. Then, the problem dependent regret bound is

c.. P\ 7T TAFT\ 7
E[Rr] <O Z””;”FH((M)) 1n<< - > + A,

= A -1
aF#a* Aap ! a cr

Letln;(z) :== % then, the problem independent regret bound is

P

21\ 521
Q (Kl—%T% Ine (K)) <E[Rz] <O Kl—%T%M

1

In¢(K)?=T
177 The minimum rate is achieved at = 0, E[Ry] = © (Klf%T% In (K))

Proof. The CDF of a generalized extreme value distribution with 0 < ¢ < 1 is given as

F(z) = exp ( (1 n c‘;”)_m) .

Then, its inverse is

1 In(1/y)) ¢ -1 11—y -1
and
[In(1/y)] ¢ ~ 1 [*fy]c —1
A : >\ ;

where In(x) <  — 1 is used. Then,

_p_ » \$
ot \17T | (1Al ) -
F'l1- < AT

¢

D
—1




178 We compute the sup h can be obtained as follows,

- (1+ C§)—1/C—1 exp (_ (14 C§)—1/g)
sup _zes[lé,llo] A (1 — exp (_ (1+ Cf)_1/4>)
<

t¢Flexp(—t) texp(—t) 1
=sup — < sup ——————— = .
tefo,1] M1 —exp(=1)) ~ ico1) A1 —exp(=t)) A

179 M can be obtained as,
* exp(—2) / * exp (—2)
———dz = dz
/0 1—F(z) 0 17exp(f (1+C§)71/C)
> Z\1/¢
< (l—i— 1+¢= )exp(—z)dz
[ (046
° 2\ 1/¢
1—|—/ 1+¢= exp (—z)dz
| (1+65)
> In(1+ (2
<1 +/ exp <—z + H(‘CFC)\)) dz
0

>~ z
Sl—i—/o exp (_Z+X) dz

A
=l++—= - A>1
i
22 —1
= =: M.
A1 !
180 Hence, suph - My < /\2(’)\\:}) < 25
60) 2T =21 T
181 For (822 {—F_l( e )] , we have,
ARt TAPY )]y

r p_ N\ ¢ =T
TAP ! 1
(60)\) p—1 ( cpzl )
P\ o1
) p-1 TAE™!
< (GC )1 lnC < D > )
AF cr—1

182 where —In¢(1/In(x)) < Inc(In(z)) < In¢(z) is used.
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183 Then, the problem dependent regret bound becomes,

s < 3 [ (32) (o s 20 e (251 (42)

aFa*
(D.15)
+ (60):1 -F! ( C_ﬂ (D.16)
AT TAT )],
(3¢)P P . 1/ e\mr\|""
+( A, Foll-7 A . (D.17)
cP 1
+ (A> + A, (D.18)

1
b,v, 2 e 2p—1 2p—1 (3c)p p—1

< PP = )

< lexp<2cp)[)\_1+e_l+2 +1]F(p_1)(Aa) (D.19)

aF#a*
6eNTT (TAFT\TT @B\ TT (TAFT\T
T Ing | ——= +{ A In¢ | — (D.20)
Ag_l cp—1 a cp—1
Ak A D.21
+ (Aa> + Aq (D.21)
1 e ﬁ
Cepv AP\ 2T TAE?
<0 Z crvpF | o (6c) In : vl (D.22)
a#a* AF A“ cr-1
184 where In¢(z) := %

185 The problem independent regret bound can be obtained by choosing the threshold of the minimum
186 gapas A =c (%)1_E In¢ (K) Note that lim,_,g =1 = In(z)

3
b,V A+1 e 2p—1 2p —1 (3C)P T
< p”p =1 )
E[Rr]< D, [eXp(2cp)[)\l+el+2 ]F(p1)<Aa (D:23)
Ag>A
Lo ((GCA) ) Inc (TAS ) D24
A, cr—1T
P\ 7T
+ (A> + AT (D.25)
by, A+1 e 2p—1 2 —1 (3¢)P =
< pTp =T )
o (t2) [20 e (2 (% o9
P\ 71 = 7T
Lo <(6CA) > In, (TAP ) .
A R

+ AT (D.28)

1 - 2p—1 K= T%
<exp <prp> |:)\ + n e n 22pp11:| r ( D ) (3)\)% c 1 (D.29)
P P ——
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187

188
189

190

191

p

Ing (K Ing(K)77) "

+2(60) 7 TeK T r Ty . (D.30)
In (K)7=1
K" 5T% 11
+071+CK _ET; lnc(K) (D31)
In¢ (K)7»=1
b A+ 1 - 2 — 1 K'"vT%»
<exp () |AEL L€y o%|p (2 @By Y (D3
2cP A—-1 e—-1 p—1 Ing (K)71
2p—1 %
IHC (K Pt >
+2(6\) 7T K BT / (D.33)
Ing (K)7»=1
K'"»T% i
o 4 KT Ing(K) (D.34)
Ing (K)»=1
o lne(z lng(x)ﬁ) <ln¢ (m1+#) for z > 2 (D.35)
o 1n< (KQ::ll)ﬁ
<O|K'7»Tr ——~ | . (D.36)

In¢ (K)7»=1

For the lower bound,

—<¢
|:1n(,1L>} -1 K-1°-1
AL ATE S\ttt = Aln¢ (K —1).
¢ ¢
Consequently, the lower bound is simply obtained by Theorem[C.5] The corollary is proved. O

Corollary D.3. Suppose G follows a Gamma distribution with a parameter o > 1 and \ > 1. Then,
the problem dependent regret bound is

p

1 £\ p—1
Cc 12 3)\ p p—1 TA571
ERr]<O| ) 2l <( Aac) ) In (a — ) + A, |- (D.37)
aFa* Ag_l a cr=t
The problem independent regret bound is
1 1 1 1 1 ln (aK1+I)pfl> o
Q ()\Kl’ETE 1n(K)) <E[Rz] <O | ()7 T cK'5T% . . (D38)

In(K)7—7
The minimum rate is achieved at o = 1, E[Rp] = © (Kl_%T% ln(K)).

Proof. The CDF of a Gamma distribution is given as

y(x; 0, \)
(o) 7

where I'(«v) is a (complete) Gamma function and ~y(z; o, A) is an incomplete Gamma function defined
as
Tz lexp (-2
Y(x; 0, A) = / Mdz.
0 A

Before finding a lower and upper bound of F~!, we introduce a lower and upper bound of a Gamma
distribution. In [3]], the bounds of F'(x) is provided as follows, for o > 1

(1o (5rar)) =P = (1-e(5))

20

F(z) =



From these bounds, we have,

1 1 1
Aln( 1)<F_1(y)<)\I‘(1+a)aln< )
1—ya 1—ya
Note that the following inequality holds: for o > 1,
Fla+1)=ala-1)---(a—[a] + YT (a - [a] + 1) < ol (1) < o

We have a simpler upper bound as

F~l(y) S/\F(l—l—a)flxln( ! 1) < Aaln (a).
1 -y« 1-y

Then,

192 C can be obtained as,

/Oo}l(z,“)(ﬂ}{l)(—,Z)dZ:/oo za_leXp(_i_Z) dz
| TI-F(2) 0 AeT(a) (1— (1—exp(=2))")

_ 1
(A1)
Ll _p_ %1
For (687~ [—F*( c?—2 )]p , we have,
AP TAY Y )14
6c) 7 1 _ cFoT Pt
AT TAI )],

198 since z € (0, 00). Then, the problem dependent regret bound becomes,

=3 o () o 20 o2 () (52)

a#a*
(D.39)
S L ) b ()
ADT? AT, a a n
(D.40)
CP p—1
+<A) +A, (D.41)

<y lexp (%f) (-1 2% 411 <2§_‘11> <(3Acip>"l (D.42)

a#a*
1 2\ poI 1
(Bhac)P\ P71 aTAZ™! cP \ 71
+< AL In e + A + A, (D.43)
1 P\ 7T
Cc 1% P\ p-T TA571
<o > —eriel (3Xac) In [ 252 +A, L (D.44)
atar AET! Aa crt

21



194 The problem independent regret bound can be obtained by choosing the threshold of the minimum
1—1
195 gapas A =c(K/T) Pln( ).

ERr]< Y lexp <b2pc”;’) [()\ )2 4 1} r <2§__11> ((?,Aczp) ﬁ (D.45)

A.>A

n (3hac)? ”ill ozTAggl p71+ cP o
nl| 2tz c
Aa cpgl Aa

<K [exp (bé’ p”) [(/\ 1) 27T 1} r <2;”_11> <(32p> o (D.47)

+ AT (D.46)

£ 1
TAw=T \ 7 AN
( (BAac)” ) (a ” ) + <c> FAT (D.48)
221 A
2p—1\_  » g 1,1 __1
<exp [ o« 4o +1}F 7 3p-1cK " »T? In(K) 71
(D.49)
_pP_
In (aKln(K)L)‘”’l
+(3\a)7 T K T (D.50)
ln(K)ﬁ
KR T In(K) 7T 4 cK' 5 T5 In(K) (D.51)
by —a | o2 2p— 1\ o2y p1-1m1 -5t
gexp<26p) [(A—l) o +1}r(p_1)3p KT In(K) T
(D.52)
(e
+ (3Xa) 7T cK' T Tw - (D.53)
In(K)7—T
1—1 .1 __1_ 1—1,,1
+cK TPTr In(K) » 1T +cK " ?»T? In(K) (D.54)
1 11 In (Ckf(—H_p%l)ﬁ
<O | (Ma)P T eK' 5 Tw . (D.55)
In(K)»—1

For the lower bound, we use,

_ 1 Y
F! >,\1n< >>)\ln(>.
W) = 1—ya/) ~ 1-y

Thus, the lower bound becomes

Q (/\Kl‘%T% 1n(K)> .
196 O

197 Corollary D.4. Suppose G follows a Pareto distribution with a parameter o > pple and \ > «.
198 Then, the problem dependent regret bound is

1 ap-1)
Cepw 3xc)P\ 7T | TAG™
ERr <0 S —oriel 4 (( Ac) ) — ] +A, |- (D.56)
atar AZ! @ crt
199 For A\ = «, the problem independent regret bound is
0 (aKl‘%+éT%) <E[Rs] <O < g a(pl—wTi) : (D.57)

200 For K > exp (p’%zl), the minimum rate is achieved at o = In(K), E[Ry] = © (Kl_%T% 1n(K)>.

22



Proof. The CDF of a Pareto distribution is given as

1
PO =1 G

Then, its inverse is
_1
Fliy)=A(1—-y) =,
Then,

201 C' can be obtained as,

I
C\
3
Q
N
Q
-
> o
e
i)
I
&
U
N

_P_ _r_ p—1
e ()]
AT TA ) 1y

202 where —F~1(y) is always negative since the support of x is (), c0). Then, the problem dependent
203 regret bound becomes,

s < 3 [ (35 {or ot e (50) ()

aFa*
(D.58)
s fr ) b 6)
Ay TAG /14 ¢ ¢ +
(D.59)
cP pll
+<A> LA, (D.60)

<Y [exp (%’(Zf) [22:_’5 +2] r (2;__11) ((3;),)),,1 (D.61)

a#a*
(3Xe)P P TA? oy @\
+< X ) = +<A> +A, (D.62)
a cr—1 a
Copwrr {(BAP\7T [TAIT D
O I e - +A, |- (D.63)
a;éa* Ap—l Aa cr—1

204 The problem independent regret bound can be obtained by choosing the threshold of the minimum
1
205 gapas A = ¢ (K/T) 77 .

E[Rr]< S lexp <b2”c”;’) [21”511 +2} r <2;__11> <(3Aczp>ﬁl (D.64)

Ag>A
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206

207

209

210

a(p 1)

Apl

+ AT (D.65)

croT

() (&)
SKlexp (%’) 2% 1 2] (p = (32)p> (D.66)

D

_1 I p 1)
(BAc)P\ 1 | TAP-1 omn cP

— AT D.67
+ ( x g N + (D.67)

p? 1 p2
 ga-D2 " 71 is decreasing for o > (D.68)

b p— 2p—1 P
<exp ( ;C];p> [22:7—11 + 2} r ( p_ . ) 37T cK rTra T (D.69)

2

2
2 1-1 ya 1 P 1 1 _1_1 _1_.1
+ (3N 71K P a2 Th -2 71 4 e T K 3T 4+ caK 3T

(D.70)
b p— 2p—1 P 1
<exp 222 [21,; + 2} r(2 37T K TP T~ 71 (D.71)
2cP -1
B 1—l+L2 1 1-~-L2 [ SN B R § 11,1
+3p=1cK ? ae-D?*Trqa  oe-1D? 4 car-T K pT?» +caK " ?»Tpr (D.72)
“A=a (D.73)
<o< e K1 a<i”1>Té) _ (D.74)
For the minimum rate, we set o« = In(K), then,
1+—»° 1-14__2p 1 11,1
0] ln(K) () -2 " T mEE-DTr | <O (K pTp 1n(K))
1 P2 :D2
where In(K)' "m0 G- < eze-7 In(K). For the lower bound,
0 (KléTéF—l (1 _ ;{)) —Q ()\Kl’%JriT%) >0 (aKP%*iT%)
The corollary is proved. O

Corollary D.5. Suppose G follows a Fréchet distribution with a parameter with o > 5 Lo and X > a.
Then, the problem dependent regret bound is

Copw 3cA TAFT] ™7
ER7]<O| > ””IP’F+<(Z) ) — ] + A, (D.75)
atar Af{‘l a cr—1
For A\ = a, the problem independent regret bound is
1—l41 1 1+L2 171+L2 1
Q(aK : an) <E[Rs] <O (a2 kv ey ) (D.76)

For K > exp ( ) the minimum rate is achieved at « = In(K), E[Rr] = © (Kl_%T% ln(K)).

Proof. The CDF of a Fréchet distribution is given as
€T —Q
riy e (-3
@ =eo(-(5)7)

F7y) = An(1/y) Ve < (1—y) Y/

Then, its inverse is
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and

An(1/y)~ e >\ (

where In(z) < z — 1 is used. Then,

-
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Y
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2 2/
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(1 ~ TAZ

In [1]], we have sup h < 2% < 2dueto A > «, and M can be obtained,

exp (—

2) > Z\@
z < - exp(—z)dz
_ )—a))d /0 (H (,\) ) p(=z)d

1/ —exp(—z 1)) <1+

=1+ /000 (;)anp(—Z)

I'la+1)

(suph)M < 4.
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TA;

, the summation is zero,

.
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+

dz

since its support is (0, c0). Then, the problem dependent regret bound becomes,
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aFa*
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213 The problem independent regret bound can be obtained by choosing the threshold of the minimum
1
214 gapas A =c(K/T)" "7 a.

bpVp 2p-1 2p—1 (3c)P 71
exp<2cp) [5+2p }F<p—1><Aa> (D.84)

E[Rr] < Z

T AT (D.85)

e

BeAP\ 7T [TAFT ] "D s\ T AT
& D.87
+( ! ) = +(A) T (D.87)
b 2p—1 2p—1 P
<exp [ 2 [5+2p—1}r P 3751 K1 P T o 71 (D.88)
2cP -1
1 1.72 172 1
+3TTATTK P S0P Trase- 7 7 4 cam T K 0T 4 caK' AT
(D.89)
b 1 (2p—1
<exp 222 {5+22pp—1 } r( 372K 3 TH 721 (D.90)
2cP -1
4 1 P2 PZ 1
+ 370K TPt e 0P Tra! Tee 02 TP T 4 eqr T KT 4 caK TR TE (D91)
1+L, 1_1+L 1
<O(a Tee-DZK " ?Tae-D2Tw | . (D.92)

The optimal rate is obtained by setting o = In(K),

1-72 D
0 (1n(K)1+m<K><w>2 Kl—%ﬂ«K?wTé) <O (KT (K)),

P2 P2
where In(K) =) @-1D? < ec»-1?, Before proving the lower bound, note that

-1/«

1 1

F! (1—):)\1n( ) > o (K —1)Y°
K 1-1

5 Consequently, the lower bound is simply obtained by Theorem|[C.5] The corollary is proved. O

2

26 E Experimental Settings

Convergence of Estimator We compare the p-robust estimator with other estimators including
truncated mean, median of mean, and sample mean. To make a heavy-tailed noise, we employ a
Pareto distribution as follows,
z¢ ~ Pareto(a., Ac)
217 where « is a shape parameter and ). is a scale parameter. Then, a noise is defined as ¢; := z; — E[z]
218 to make the mean of the noise zero. In simulation, we set atrue meany = l and Y; = y + ¢ is
219 observed. The p-th moment of Y; is computed as follows,

P
BV =Ely+2 — B[] P < (v~ E[x] |+ (Bl ")) ©.1)
where the triangular inequality is used. Since z; is a Pareto random variable with c and A, we have,
for ae > p,
Qe
E = —
[ ae—1
and \»
E|z|P = —<e
Qe — P
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Hence, the upper bound of the p-th moment is given as

P
acAe alPA
vp = | |1— + 17 .
ae—1|  (ae —p)t/p
While the proposed method does not require v, truncated mean or median of mean estimator requires

Vp.

Multi-Armed Bandits with Heavy-Tailed Rewards Entire experimental results are shown in
Figure For robust UCB [4], we modify the confidence bound as

1-1/p
o (12219Y'

n

where ¢ > 0. Since the original confidence bound makes convergence slow, we scale down the
confidence bound. This modification shows much better performance than the original robust UCB
and we optimize ¢ by using the grid search over [0.001, 5.0]. We make the grid by dividing [0.1, 5.0]
into 50 parts, [0.01, 0.1] into 10 parts. Furthermore, 0.005 and 0.001 are also tested. Total 62 trials are
conducted for the grid search and the best parameter is selected. For the proposed method and DSEE
[7]], the best parameter is chosen by the same way. Unlikely to other methods, the hyperpamrameter
g of GSR [3] is within [0.0,1.0]. Thus, we make the grid by dividing [0.02,1.0] into 50 parts,
(0.002, 0.02] into 10 parts and finally, 0.005 and 0.0001 are searched. Total 62 trials are conducted
for the grid search and the best parameter is selected.

From a practical perspective, reducing the number of tuning parameters makes the algorithm more
robust. In particular, the perturbations do not depend on both bound and moment. So, the exploration
tendency is not much sensitive to the mismatch of the moment parameter. To verify this, we add
simple simulations by mismatching the moment parameter where all other settings are the same as
the experiments in the manuscript. As shown in the above R;/t plot in Figure (a) APE? with
Frechet perturbation shows a robust performance while (b) the robust UCB is sensitive depending on
the choice of ¢, the moment parameter for the algorithm (here p = 1.5 is the true moment).
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Figure E.1: Time-Averaged Cumulative Regret. p is the maximum order of the bounded moment
of noises. A is the gap between the maximum and second best reward. For p = 1.5, A = 1.0 and
for p = 1.1, Ac = 0.1. The solid line is an averaged error over 40 runs and a shaded region shows a
quarter standard deviation.
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Figure E.2: R/t plot with p = 1.5, A = 0.1. (a) APE? with Frechet perturbation shows a robust
performance while (b) the robust UCB is sensitive depending on the choice of ¢, the moment
parameter for the algorithm. Other perturbations show similar tendency.
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