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Figure 1: Graphical representation of the DNN based multi-fidelity surrogate model. The output in each fidelity
fm(x) (1 ≤ m ≤ M ) is fulfilled by a (deep) neural network.

1 Definitions of Synthetic Benchmark Functions

In the experiments, we used three synthetic benchmark tasks to evaluate our method. The definitions
of the objective functions are given as follows.

1.1 Branin Function

The input is two dimensional, x = [x1, x2] ∈ [−5, 10]× [0, 15]. We have three fidelities to query the
function, which, from high to low, are given by

f3(x) = −
(
−1.275x21

π2
+

5x1
π

+ x2 − 6

)2

−
(

10− 5

4π

)
cos(x1)− 10,

f2(x) = −10
√
−f3(x− 2)− 2(x1 − 0.5) + 3(3x2 − 1) + 1,

f1(x) = −f2
(
1.2(x + 2)

)
+ 3x2 − 1. (1)

We can see that between fidelities are nonlinear transformations and non-uniform scaling and shifts.
The global maximum is -0.3979 at (−π, 12.275), (π, 2.275) and (9.425, 2.475).

1.2 Park1 Function

The input is four dimensional, x = [x1, x2, x3, x4] ∈ [0, 1]4. We have two fidelities,

f2(x) =
x1
2

[√
1 + (x2 + x23)

x4
x21
− 1

]
+ (x1 + 3x4) exp[1 + sin(x3)],

f1(x) =

[
1 +

sin(x1)

10

]
f2(x)− 2x1 + x22 + x23 + 0.5. (2)

The global maximum is at 25.5893 at (1.0, 1.0, 1.0, 1.0).

1.3 Levy Function

The input is two dimensional, x = [x1, x2] ∈ [−10, 10]2. The query has three fidelities,

f3(x) = − sin2(3πx1)− (x1 − 1)2[1 + sin2(3πx2)]− (x2 − 1)2[1 + sin2(2πx2)],

f2(x) = − exp(0.1 ·
√
−f3(x))− 0.1 ·

√
1 + f23 (x),

f1(x) = −
√

1 + f23 (x). (3)

The global maximum is 0.0 at (1.0, 1.0).

2 Details of Real-World Applications

2.1 Mechanical Plate Vibration Design

In this application, we want to make a 3-D simply supported, square, elastic plate, of size 10×10×1,
as shown in Fig. 2. The goal is to find materials that can maximize the fourth vibration mode
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frequency (so as to avoid resonance with other parts which causes damages). The materials are
parameterized by three properties, Young’s modulus (in [1 × 1011, 5 × 1011]), Poisson’s ratio (in
[0.2, 0.6]) and mass density (in [6× 103, 9× 103]).

To compute the frequency, we discretize the plate with quadratic tetrahedral elements (see Fig. 2).
We consider two fidelities. The low-fidelity solution is obtained from setting a maximum mesh edge
length to 1.2, while the high-fidelity 0.6. We then use the finite finite element method (Zienkiewicz
et al., 1977) to solve for the first 4th vibration mode and compute the frequency as our objective.

Figure 2: The plate discretized with quadratic tetrahedral elements (the maximum mesh edge length is 1.2).

2.2 Thermal Conductor Design

In the second application, we consider the design of a thermal conductor, shown in Fig. 3a. The
heat source is on the left, where the temperature is zero at the beginning and ramps to 100 degrees
in 0.5 seconds. The heat runs through the conductor to the right end. The size and properties of the
conductor are fixed: the thermal conductivity and mass density are both 1. We need to bore a hole in
the centre to install the conductor. The edges on the top, bottom and inside the hole are all insulated,
i.e., no heat is transferred across these edges. Note that the size and the angle of the hole determine
the speed of the heat transfusion. The hole in general is an ellipse, described by three parameters,
x-radius, y-radius and angle. The goal is to make the heat conduction (from left to right) as fast
as possible. Hence, we use the time to reach 70 degrees on the right end as the objective function
value. To compute the time, we discretize the conductor with quadratic tetrahedral elements, and
apply the finite element methods to solve a transient heat transfer problem (Incropera et al., 2007) to
obtain a response heat curve on the right edge. An example is given in Fig. 3b. The response curve
is a function of time, from which we can calculate when the temperature reaches 70 degrees. We
consider queries of two fidelities. The low fidelity queries are computed with the maximum mesh
edge length being 0.8 in solving the heat transfer problem; the high fidelity queries are computed
with the maximum mesh edge length being 0.2.

3 Details of Stochastic Variational Learning

We develop a stochastic variational learning algorithm to jointly estimate the posterior ofW = {wm}
— the NN weights in the output layer in each fidelity, and the hyperparameters, including all the
other NN weights Θ = {θm} and noise variance s = [σ2

1 , . . . , σ
2
M ]>. To this end, we assume

q(W) =
∏M

m=1 q(wm) where each q(wm) = N (wm|µm,Σm). We parameterize Σm with its
Cholesky decomposition to ensure the positive definiteness, Σm = LmL>m where Lm is a lower
triangular matrix. We then construct a variational model evidence lower bound (ELBO) from the
joint probability of our model (see (4) of the main paper),

L
(
q(W),Θ, s

)
= Eq

[
log(p(W,Y|X ,Θ, s)

q(W)

]
= −

M∑
m=1

KL
(
q(wm)‖p(wm)

)
+

M∑
m=1

Nm∑
n=1

Eq

[
log
(
N (ynm|fm(xnm), σ2

m)
)]
, (4)

where p(wm) = N (wm|0, I) and KL(·‖·) is the Kullback Leibler divergence. We maximize L to
estimate q(W), Θ and s jointly. However, since the NN outputs fm(·) in each fidelity are coupled in
a highly nonlinear way (see (3) of the main paper), the expectation terms in L is analytical intractable.
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(b) Heat Response Curve
Figure 3: The thermal conductor with one transient heat solution (a), and the heat responsive curve on the
right edge (b). The white triangles in (a) are the finite elements used to discretize the conductor to compute the
solution.

To address this issue, we apply stochastic optimization. Specifically, we use the reparameterization
trick (Kingma and Welling, 2013) and for each wm generate parameterized samples from their
variational posterior, ŵm = µm + Lmε where ε ∼ N (·|0, I). We then substitute each sample ŵm

for wm in computing all log
(
N (ynm|fm(xnm), σ2

m)
)

in (4) and remove the expectation in front of
them. We therefore obtain L̂, an unbiased estimate of ELBO, which is analytically tractable. Next,
we compute ∇L̂, which is an unbiased estimate of the ∇L and hence can be used to maximize L.
We can use any stochastic optimization algorithm.

4 Proof of Lemma 4.1

Lemma 4.1. As long as the conditional posterior variance γ(fm−1,x) > 0, the posterior variance
ηm(x), computed based on the quadrature in (7) of the main paper, is positive.

Proof. First, for brevity, we denote u(tk,x) and γ(tk,x) in (7) of the main paper by uk and γk,
respectively. Then from the quadrature results, we compute the variance

Var(fm|D) =
∑
k

gkγk +
∑
k

gku
2
k − (

∑
k

gkuk)2.

Since γk > 0, the first summation
∑

k gkγk > 0. Note that the quadrature weights have all gk > 0
and

∑
k gk = 1. We define ū =

∑
k gkuk. Next, we derive that∑

k

gku
2
k − (

∑
k

gkuk)2 =
∑
k

gku
2
k − ū2

=
∑
k

gku
2
k + ū2 − 2ū2

=
∑
k

gku
2
k +

∑
k

gkū
2 − 2ū2

=
∑
k

gku
2
k +

∑
k

gkū
2 − 2

∑
k

gkukū

=
∑
k

gk(u2k + ū2 − 2ukū)

=
∑
k

gk(uk − ū)2 ≥ 0. (5)

Therefore, Var(fm|D) > 0.
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5 Proof of Nonnegative Variance in (12) of the Main Paper

We show the variance in (12) of the main paper, computed by quadrature, is non-negative. The proof
is very similar to that of Lemma 4.1 (Section 4). We denote the quadrature weights and nodes by
{gk} and {tk}. Then we have

Z =
∑
k

gkR(tk), Z1 =
∑
k

gktkR(tk), Z2 =
∑
k

gkt
2
kR(tk). (6)

Therefore,

Z1

Z
=
∑
k

tk
gkR(tk)∑
j gjR(tj)

=
∑
k

tkνk,

Z2

Z
=
∑
k

t2k
gkR(tk)∑
j gjR(tj)

=
∑
k

t2kνk (7)

where νk = gkR(tk)∑
j gjR(tj)

> 0 and
∑

k νk = 1. Following the same derivation as in (5), we can
immediately show that the variance

Z2/Z − Z2
1/Z

2 =
∑
k

νk(tk − t̄)2 ≥ 0

where t̄ = Z1/Z =
∑

k tkνk.
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