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Abstract

Several works have aimed to explain why overparameterized neural networks
generalize well when trained by Stochastic Gradient Descent (SGD). The consensus
explanation that has emerged credits the randomized nature of SGD for the bias
of the training process towards low-complexity models and, thus, for implicit
regularization. We take a careful look at this explanation in the context of image
classification with common deep neural network architectures. We find that if we
do not regularize explicitly, then SGD can be easily made to converge to poorly-
generalizing, high-complexity models: all it takes is to first train on a random
labeling on the data, before switching to properly training with the correct labels.
In contrast, we find that in the presence of explicit regularization, pretraining with
random labels has no detrimental effect on SGD. We believe that our results give
evidence that explicit regularization plays a far more important role in the success
of overparameterized neural networks than what has been understood until now.
Specifically, by penalizing complicated models independently of their fit to the
data, regularization affects training dynamics also far away from optima, making
simple models that fit the data well discoverable by local methods, such as SGD.

1 Introduction

In [1]], Zhang et al. demonstrated that several popular deep neural network architectures for image
classification have enough capacity to perfectly memorize the CIFAR10 training set. That is, they
can achieve zero training error, even after the training examples are relabeled with uniformly random
labels. Moreover, these memorizing models are not even hard to find; they are reached by standard
training methods such as stochastic gradient descent (SGD) in about as much time as it takes to train
with the correct labels. It would stand to reason that since these architectures have enough capacity
to “fit anything,” models derived by fitting the correctly labeled data, i.e., “yet another anything,”
would fail to generalize. Yet, miraculously, they do not: models trained by SGD on even severely
overparameterized architectures generalize well. Following recent work [2} (3} 14} |5} 16} 7} 18 19} [10L [11}
12], our study is motivated by the desire to shed some light onto this miracle which stands at the
center of the recent machine learning revolution.

When the training set is labeled randomly, all models that minimize the corresponding loss function
are equivalent in terms of generalization, in the sense that, we expect none of them to generalize. The
first question we ask is: when the true labels are used, are all minima of the loss function equivalent
in terms of generalization, or are some better than others? As we see—perhaps unsurprisingly—not
all global minima are created equal: there exist bad global minima, i.e., global minima that generalize
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poorly. This is compatible with the findings of the experiments in [13]], that generate bad global
minima in a similar way as we do, but with less of a dramatic drop in test accuracy.

The existence of bad global minima is rather unsurprising, but implies something important: the
optimization method used for training, i.e., for selecting among the different (near-)global minima,
has germane effect on generalization. In practice, SGD appears to avoid bad global minima, as
different models produced by SGD from independent random initializations tend to all generalize
equally well, a phenomenon attributed to an inherent bias of the algorithm to converge to models of
“low complexity” [[14, 15[ 16} 17,118 [19]. This brings about our second question: does SGD deserve
all the credit for avoiding bad global minima, or are there also other factors at play? More concretely,
can we initialize SGD so that it ends up at a bad global minimum? Of course, since we can always
start SGD at a bad global minimum, our question has a trivial positive answer as stated. We show
that initializations that cause SGD to converge to bad global minima can be constructed given only
unlabeled training data, i.e., without knowledge of the true loss landscape.

The fact that we can construct bad initializations without knowledge of the loss landscape suggests
strongly that these initializations correspond to models with inherently undesirable characteristics
which persist, at least partially, in the trained models that fit the correct labels. Such a priori
undesirability justifies a priori preference of some models over others, i.e., regularization. In particular,
if a regularization term makes such models appear far worse than before, this correspondingly
incentivizes SGD to move away from them when initialized at the models. This is precisely what
we find in our experiments: adding ls regularization and data augmentation, i.e., regularization that
favors models invariant to the transformations used to augment the data, allows SGD to overcome
the effect of pretraining with random labels and end up at good global minima. In that sense, data
augmentation and regularization appear to play a very significant, and largely unexplored, role beyond
distinguishing between different models that fit the data equally well, e.g., as studied in [20]]. They in
fact affect training dynamics far away from optima, making good models easier to find, perhaps by
making bad models more evidently bad.

A Sketch of the Phenomenon As an illustrative toy-example, we consider the task of training
a two-layer, fully-connected neural network for binary classification, where the training data is
sampled from two identical, well-separated 2-dimensional Gaussian distributions. In our example,
each class comprises 50 samples, while the network has 100 hidden units in each layer and uses
ReLU activations. In Figure[I] we show the decision boundary of the model reached by training with
SGD until 100% accuracy is achieved, in four different settings:

1. Random initialization + Training with true labels.

2. Random initialization + Training with random labels.

3. Random initialization + Training with random labels + Training with true labels.

4

. Random initialization + Training with random labels + Training with true labels using data
augmentatimﬂ and [ regularization.
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Figure 1: The decision boundary of the model reached by SGD in Settings respectively.

"Data augmentation was performed by replicating each training point twice and adding Gaussian noise.



Figure [Ia] shows that from a random initialization, SGD converges to a model with near max margin.
Figure|1b[shows that when fitting random labels, the decision boundary becomes extremely complex
and has miniscule margin. Figure[Tc|shows that when SGD is initialized at such an extremely complex
model, it converges to a “nearby” model whose decision boundary is unnaturally complex and has
small margin. Finally, in Figure[Td] we see that when data augmentation and regularization are added
to the training regime, SGD manages to escape the bad initialization corresponding to first training
with random labels and, again, reaches a model with a max margin decision boundary.

In Section 3] we show that the phenomenon sketched above persists in state-of-the-art neural net-
work architectures over real datasets. Specifically, we examine VGG16, ResNet18, ResNet50, and
DenseNet40, trained on CIFAR, CINIC10, and a restricted version of ImageNet. In all cases, we find
the following: 1) pretraining with random labels causes subsequent SGD training on true labels to
fail, i.e., when started from a model trained to fit random labels, SGD finds models that fit the true
labels perfectly but have poor test performance, and 2) adding regularization to the training on true
labels (either explicit or as data augmentation) allows SGD to overcome the bad initialization caused
by pretraining with random labels and converge to models with good test performance.

2 Experimental Setup

Datasets and Architectures We ran experiments on the CIFAR [21]] dataset (including CIFAR10
and CIFAR100), CINIC10 [22] and a resized Restricted ImageNet [23]E] The CIFAR training set
consists of 50k data points and the test set consists of 10k data points. The CINIC10 training set
consists of 90k data points and the test set consists of 90k data points. The Restricted ImageNet
training set consists of approximately 123k data points and the test set consists of 4.8k data points.
We train four models on them: VGG16 [24], ResNet18 and ResNet50 [25]] and DenseNet40 [26]].

Implementation and Reproducibility We run our experiments on PyTorch 0.3. Our figures,
models, and all results can be reproduced using the code available at an anonymous GitHub repository:
https://github.com/chao1224/BadGlobalMinimal

Training methods We consider the state-of-the-art (SOTA) SGD training and vanilla SGD training.
The former corresponds to SGD with data augmentation (random crops and flips), ¢>-regularization,
and momentum. The latter corresponds to SGD without any of these features.

Algorithm 1 Adversarial initialization

Input: Original training dataset S’; Replication factor R; Noise factor NV

for every image = € S do
for i from 1 to R do
x; 4 zero-out a random subset comprising N % of the pixels in
y; < Uniformly random label
Add (xi, yb) toC
end for
end for
Train the architecture to 100% accuracy on C from a random initialization using vanilla SGDE]
Output: The weight vector of the architecture when training ends

Initialization We consider two kinds of initialization: random and adversarial, i.e., generated by
training on a random labeling of the training data. For random initialization we use the PyTorch de-
faults. Specifically, both the convolutional layers and fully connected layers are initialized uniformly.
To create an adversarial initialization, we start from a random initialization and train the model on an
augmented version of the original training dataset where we have labeled every example uniformly at
random. All details can be found in Algorithmﬁ]ﬁ

2We resize the images from Restricted ImageNet to 32 x 32 for faster computation, which leads to a test
accuracy drop from 96% to 87%.
*For architectures that cannot reach 100% accuracy on random labels we train until convergence occurs.


https://github.com/chao1224/BadGlobalMinima

Hyperparameters We apply well-tuned hyperparameters for each model and dataset. For CIFAR,
CINIC10, and Restricted ImageNet, we use batch size 128, while the momentum term is set to 0.9
when it is used. When we use ¢ regularization, the regularization parameter is 5 - 10~* for CIFAR
and Restricted ImageNet and 10~ for CINIC10. We use the following learning rate schedule for
CIFAR: 0.1 for epochs 1 to 150, 0.01 for epoch 151 to 250, and 0.001 for epochs 251 to 350. We use
the following learning rate schedules for CINIC10 and Restricted ImageNet: 0.1 for epochs 1 to 150,
0.01 for epoch 151 to 225, and 0.001 for epochs 226 to 300.

Before we proceed, we would like to note that one can potentially force vanilla SGD to escape bad
initializers (or any initializers for that matter) by employing non-standard, adaptive learning schedules
such as those in [27, 28], or by using “unnatural”, or enormously large learning rate for a few
iterations and then switching back to a more standard-practice schedule. The goal of our experiments
is to isolate the effects of explicit regularization and implicit bias—to the extent possible—from that
of the choice of learning rates. Hence, across all experiments, we adopt standard-practice, decaying
schedules, optimized for good convergence speeds.

3 Experimental Findings and Observed Phenomena

The motivation behind our initializations comes from the expectation that the need to memorize
random labels will consume some of the learning capacity of the network, reducing the positive
effects of overparameterization. Furthermore, as seen in the toy example in Section [I] training on
random labels yields complex decision boundaries. As a result, the question becomes whether the
bias of SGD towards simple models suffices to push it away from the initial (complex) model, or not.
We find that it does not suffice. In contrast, we find that the bias towards simple models induced by
regularization and data augmentation, does.

To offer insight on our above core finding, in the following we present several metrics related to the
trained models. To generate the experimental results, we ran each setup 5 times with different random
seeds and reported the min, max and average accuracy and complexity for each model and dataset.

We first report the train and test accuracy curves for our 16 setups (4 datasets and 4 models), followed
by the impact of the replication parameter R on the test accuracy. We then examine how different
combinations of training heuristics (e.g., data augmentation, regularization and momentum) impact
the overall test accuracy with and without pretraining on random labels. After this, we report the
distance that a model travels, first from a random initialization to the model that fits random labels
and then from that model to the model trained on the correct labels. Finally, we report several norms
that are well-known proxies for model complexity, and also the robustness of all models trained
against adversarial perturbations, i.e., yet another model complexity proxy.

Our main observations as taken from the figures below and our experimental data are as follows:

1. Vanilla SGD on the true labels from a random initialization reaches 100% training accuracy
for all models and datasets tested, which is consistent with [[1]].

2. Vanilla SGD on the true labels after first training on random labels reaches 100% training
accuracy, but suffers up to 40% test accuracy degradation compared to the model reached
from a random initialization. That is, models which fit the true training labels perfectly can
have a difference of up to 40% in test accuracy: not all global optima are equally good.

3. SOTA SGD converges to nearly the same test accuracy from random vs. adversarial initial-
ization, i.e., it escapes the detrimental effect of first training on random labels.

4. Data augmentation, {5 regularization and momentum all help SGD to move far away (in
euclidean distance) from adversarial initializations; in sharp contrast, vanilla SGD finds a
minimizer close to the adversarial initialization.

3.1 Training Accuracy

In Figure 2] we report the training accuracy convergence for all models setups on all four datasets.
We consistently observe two phenomena.

First, we see that after a sufficient number of epochs for most setups, we can reach 100% training
accuracy irrespective of the initialization, or the use of data augmentation, regularization or momen-
tum. The only outlier here would be DenseNet since it seems to only achieve a little less than 100%



training accuracy on some datasets. However, in the vast majority of settings the models can perfectly
fit the training data.

The second phenomenon observed is that the speed of convergence to 100% training accuracy is
irrespective of whether we start with adversarial or random initialization. This may hint at the
possibility that models that fit the true labels perfectly (which exist for most cases) are close to most
initializations, including the adversarial one.
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Figure 2: Training accuracy (%) vs number of epochs on CIFAR, CINIC10 and Restricted ImageNet
on all four neural network models.
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Figure 3: Test accuracy (%) vs number of epochs on CIFAR, CINIC10 and Restricted ImageNet on
all four neural network models.



3.2 Test accuracy

Our most important findings are shown in Figure[3] which illustrates the test accuracy convergence
during training. We see that the test accuracy of adversarially initialized vanilla SGD flattens out
significantly below the corresponding accuracy under a random initialization, even though both
methods achieve 100% training accuracy. The test accuracy degradation can be up to 40% on
CIFAR100, while for DenseNet the test degradation is comparatively smaller.

At the same time, we see that the detrimental effect of adversarial initialization vanishes once we use
data augmentation, momentum, and /5 regularization. This demonstrates that by also changing the
optimization landscape far from good models, the above heuristics play a role that has not received
much attention, namely effecting the dynamics of the search for good models.

It is natural to ask if the bad global models to which SGD converges when adversarially initialized
have some shared properties. In the following, we argue that one property that stands out is that such
bad global minima are in a small neighborhood within the adversarial initializers; and, it appears, that
as long as it can find a perfect fit, SGD prefers these models, as it take less “effort" to converge to. In
contrast, as we see later on, SOTA SGD forces travel far from the bad initialization.

3.3 Distance Travelled during Training

Here we report on the distance travelled from an initializer till the end of training in our different setups.

First we define the distance between the parameters of two models W7 and Wy as d(W7, Ws) =
W1 —=Ws|r

Twale —» Where | - || 7 denotes the Frobenius norm.

In Table|l} we report the distance travelled from a random vs. an adversarial initialization to the final
model (achieving 100% training accuracy). A subscript O denotes an initializer; an S or V' subscript
indicates training with SOTA or vanilla SGD. The R or A superscripts indicate whether the model
has been initialized randomly or adversarially.

We observe that from a random initialization, the distance that vanilla SGD travels to a model
with 100% training accuracy is independent of whether we use the correct labels or random labels.
Specifically, whether we want to train a genuinely good model, or to find an adversarial initialization
the distance traveled is about 0.9. Intriguingly, when vanilla SGD is initialized adversarially, the
distance to a model with 100% training accuracy on the correct labels is far less than 0.9, being
approximately 0.2. This can be interpreted as SGD only spending a modicum of effort to “fix up” a
bad model, just enough to fit the training labels.

In contrast, when training with the correct labels, the distance travelled by SOTA SGD to a model with
100% training accuracy is significantly larger if we initialize adversarially vs. if we initialize randomly,
in most cases by nearly an order of magnitude. This hints at the possibility that data augmentation,
regularization and momentum enable SGD to escape the bad initialization by dramatically altering
the landscape in its vicinity (and beyond).

Finally, we observe that bad models seem to always be in close proximity to random initializers, i.e.,
bad models are easy to find from almost every point of the parameter space.

Table 1: The model distance (mean of 5 random runs) for the different datasets and models.

Dataset | Model (W, WiDJd(WI, WEaWE, WihaWE, wiiw e, wawik, wiblaws, wi)

DenseNet40 0.810 3.715 0.946 0.950 3.715 0.347 28.669

CIFARI0 ResNet18 0.953 3.917 0.873 0.879 3.902 0.207 12.421
ResNets0 | 0894 8552 0919 0923 8.608 0194 36311

VGGI6 | 0907 3,464 0950 0953 3433 0264 26,838
DenseNet40 0.917 2.008 0.946 0.968 1.980 0.538 13.290

ICIFAR 10 ResNet18 0915 2.609 0.852 0.862 2.597 0.210 7.243
ResNet50 0.917 4.941 0.925 0.927 4.882 0.172 24.598

VGGI6 | 0919 2029 0960 0962 2035 0253 19388
DenseNet40 0.917 1.415 0.955 0.976 1.440 0.491 12.102

CINICI0 ResNet18 0.836 1.565 0.942 0.951 1.560 0.212 10.961
ResNet50 0.837 3.260 0.952 0.955 3.274 0.157 24.940

VGG16 0.844 1.406 0.974 0.977 1.397 0.241 17.916

IDenseNet 4 0.940 3.378 0.966 0.982 3.377 0.520 39.314
Restricted| ResNet 18 0.849 3.154 0.969 0.973 3.164 0.163 47.184
ImageNet| ResNet 50 0.883 7.123 0913 0.916 7.139 0.164 30.841
VGG 16 0.836 2.885 0.985 0.986 2.871 0.172 83.035




3.4 The Effect of the Replication Factor R on Test Accuracy

Here, we report the test accuracy effect of the replication factor R, i.e., the number of randomly
labeled augmentations that are applied to each point during adversarial initialization. In Figure 4]
we plot the test accuracy performance for all networks we tested as a function of the number of
the randomly labeled augmentations R. When we vary R, we observe that SOTA SGD essentially
achieves the same test accuracy, while the test performance of vanilla SGD degrades, initially fast,
and then slower for larger R.

We would like to note that although it would be interesting to make R even bigger, the time needed to
generate the adversarial initializer grows proportional to R, as it requires training a dataset (of size
proportional to R) to full accuracy.
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Figure 4: The effect of R on CIFARI1O0, the zero-out ratio is fixed to 10%. Clearly, increasing R
causes vanilla SGD to suffer more. In contrast, SOTA SGD always stays unaffected.

3.5 The Effect of Different Training Heuristics

In our implementation, SOTA SGD involves the simultaneous use of data augmentation, {5 regular-
ization and momentum. Here we tease out the different effects, by exploring all 8 combinations of
the 3 heuristics as shown in Table 2} in order to examine if a specific heuristic is particularly effective
at repairing the test accuracy damage done by an adversarial initialization. What we find is that each
heuristic by itself is enough to allow SGD to largely escape a bad initialization, but not to reach the
same level of test accuracy as from a random initialization. When a second heuristic is added, though,
the test accuracy becomes independent of the initialization, in all three combinations.

Table 2: Multiple SGD results with random init and adversarial init respectively using model
ResNet18 on CIFAR10.

Random Init Adversarial Init

Mode Train Acc Test Acc Train Acc Test Acc
Vanilla SGD 100.000 £ 0.000 | 84.838 £ 0.193 | 100.000 £ 0.000 | 56.024 + 0.883
DA 100.000 £ 0.000 | 93.370 &= 0.115 | 99.995 + 0.003 89.402 4+ 0.175
la 100.000 £ 0.000 | 87.352 £ 0.055 | 100.000 4 0.000 | 83.172 4 3.732
Momentum 100.000 £ 0.000 | 89.200 £ 0.176 | 100.000 & 0.000 | 89.016 4 0.142
DA+/5 100.000 £ 0.000 | 94.680 £ 0.071 | 100.000 £ 0.000 | 94.192 £+ 0.173
DA+Momentum 100.000 £ 0.000 | 93.448 4 0.242 | 100.000 = 0.001 | 92.756 + 0.347
{2+Momentum 100.000 £ 0.000 | 89.050 £ 0.110 | 100.000 £ 0.000 | 88.932 + 0.373
DA+/2+Momentum (SOTA) | 100.000 = 0.000 | 95.324 + 0.086 | 100.000 £ 0.001 | 95.346 =+ 0.098

3.6 Proxies for Model Complexity

Here we report on some popular proxies for model complexity, e.g., the Frobenius norm of the
weights of the network, and recently studied path norms [2]. For brevity, we only report the results
using ResNet50, while all remaining figures can be found in the supplemental material.

We observe that across all three norms, the network tends to have smaller norm for SOTA SGD
irrespective of the initialization. At the same time, we observe that the adversarially initialized model
trained with vanilla SGD has larger norms compared to random initialization.

Taking these norms as proxies for generalization, then they indeed do track our observations that
adversarial initialization leads vanilla SGD to worse generalization, and SOTA SGD explicitly biases
towards good global models, while being unaffected by adversarial initialization.
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Figure 5: Norm measurement on CIFAR10 and ResNet 50.

3.7 Robustness to Adversarial Examples

Robustness to adversarial examples is another metric we examine. In this case, model robustness
is a direct proxy for margin, i.e., the proximity of the decision boundary to the train, or test data.
In Figure[6] we report the test accuracy degradation once adversarial perturbations are crafted for
Resnet50 on all four datasets. To compute the adversarial perturbation we use the Fast Gradient Sign
Attack (FGSM) [[L1] on the final model.

Consistent with the norm measures in the previous subsection, we observe that when adversarially
initialized, vanilla SGD finds models that are more prone to small perturbations that lead to misclassi-
fication. This is to be expected, since (as also observed in the toy example), the decision boundaries
for adversarially initialized vanilla SGD tend to be complex, and also are very close to several training
points (i.e., their margin is small).

As observed in the previous figures, the decision boundaries of models derived by SOTA SGD are
less prone to adversarial attacks, potentially due to the fact that they achieve better margin.
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Figure 6: FGSM on CIFAR, CINIC10 and Restricted ImageNet using ResNet50.

4 Conclusion

Understanding empirical generalization in the face of severe overparameterization has emerged as a
central and fascinating challenge in machine learning, primarily due to the dramatic success of deep
neural networks. Several studies aim to explain this phenomenon. Besides “no bad local minima”,
the emergent consensus explanation is that SGD is biased towards minima of low complexity.

In this work, we first show that models that fit the training set perfectly yet have poor generalization
not only exist, but are what SGD converges to if training on the true labels is preceded by training on
random labels. In other words, the bias of SGD towards simple models is not enough to overcome the
effect of starting at a complicated model (that fits random labels). Then we show that, in contrast to
the above picture, regularization (either explicit or in the form of data augmentation) and momentum,
do suffice for SGD to escape the effect of the initialization and reach models that generalize well.

Broader Impacts

We believe that the main value of our work is in pointing out the crucial, yet largely unexplored, role
played by regularization in search dynamics. This is a departure from the usual way of thinking about
generalization, wherein its role is to ensure stability of the chosen model with respect to fluctuations



in the training sample. In other words, we make the point that regularization is important not only in
its role of demoting (penalizing) complex models that fit the data well, but even in penalizing complex
models that fit the data poorly, altering the entirety of the optimization landscape and making the
space of simple models better searchable by local methods such as SGD. We understand that our
work leaves open the exact mechanism through which regularization achieves this effect, but the
experimental evidence we give for this effect is undeniable.

Given the enormous intellectual importance of regularization in machine learning, the possibility
that its role is actually far larger in scope than previously realized, is rather remarkable. In that
sense, the value of our work is in opening up a potentially large domain of further research, namely
understanding the role of regularization in search dynamics, including the possibility of a future
direction wherein regularization is aimed not only at promoting model stability but also model
discoverability.

Acknowledgements

Dimitris Papailiopoulos is supported by an NSF CAREER Award #1844951, two Sony Faculty
Innovation Awards, an AFOSR & AFRL Center of Excellence Award FA9550-18-1-0166, and an
NSF TRIPODS Award #1740707.

References

[1] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization. 2017.

[2] Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nati Srebro. Exploring
generalization in deep learning. In Advances in Neural Information Processing Systems, pages
5947-5956, 2017.

[3] Tomaso Poggio, Kenji Kawaguchi, Qianli Liao, Brando Miranda, Lorenzo Rosasco, Xavier
Boix, Jack Hidary, and Hrushikesh Mhaskar. Theory of deep learning iii: explaining the
non-overfitting puzzle. arXiv preprint arXiv:1801.00173, 2017.

[4] Roman Novak, Yasaman Bahri, Daniel A Abolafia, Jeffrey Pennington, and Jascha Sohl-
Dickstein. Sensitivity and generalization in neural networks: an empirical study. arXiv preprint
arXiv:1802.08760, 2018.

[5] Alon Brutzkus, Amir Globerson, Eran Malach, and Shai Shalev-Shwartz. Sgd learns over-
parameterized networks that provably generalize on linearly separable data. arXiv preprint
arXiv:1710.10174, 2017.

[6] Mikhail Belkin, Siyuan Ma, and Soumik Mandal. To understand deep learning we need to
understand kernel learning. arXiv preprint arXiv:1802.01396, 2018.

[7] Siyuan Ma, Raef Bassily, and Mikhail Belkin. The power of interpolation: Understanding the
effectiveness of sgd in modern over-parametrized learning. arXiv preprint arXiv:1712.06559,
2017.

[8] Vatsal Shah, Anastasios Kyrillidis, and Sujay Sanghavi. Minimum weight norm models do not
always generalize well for over-parameterized problems. arXiv preprint arXiv:1811.07055,
2018.

[9] Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nati Srebro, and Benjamin Recht. The
marginal value of adaptive gradient methods in machine learning. In Advances in neural
information processing systems, pages 4148—4158, 2017.

[10] Tomaso Poggio, Andrzej Banburski, and Qianli Liao. Theoretical issues in deep networks.
Proceedings of the National Academy of Sciences, 2020.

[11] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and Harnessing
Adversarial Examples. arXiv e-prints, page arXiv:1412.6572, Dec 2014.



[12] Piotr Zielinski, Shankar Krishnan, and Satrajit Chatterjee. Explaining memorization and
generalization: A large-scale study with coherent gradients. arXiv preprint arXiv:2003.07422,
2020.

[13] Qianli Liao, Brando Miranda, Jack Hidary, and Tomaso Poggio. Classical generalization
bounds are surprisingly tight for deep networks. Technical report, Center for Brains, Minds and
Machines (CBMM), 2018.

[14] Suriya Gunasekar, Blake E Woodworth, Srinadh Bhojanapalli, Behnam Neyshabur, and Nati
Srebro. Implicit Regularization in Matrix Factorization. page 9, 2017.

[15] Behnam Neyshabur, Ryota Tomioka, Ruslan Salakhutdinov, and Nathan Srebro. Geometry of
Optimization and Implicit Regularization in Deep Learning. arXiv:1705.03071 [cs], May 2017.
arXiv: 1705.03071.

[16] Junhong Lin, Raffaello Camoriano, and Lorenzo Rosasco. Generalization Properties and
Implicit Regularization for Multiple Passes SGM. page 9, 2016.

[17] Behnam Neyshabur. Implicit Regularization in Deep Learning. arXiv:1709.01953 [cs], Septem-
ber 2017. arXiv: 1709.01953.

[18] Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. In Search of the Real Inductive Bias:
On the Role of Implicit Regularization in Deep Learning. arXiv:1412.6614 [cs, stat], December
2014. arXiv: 1412.6614.

[19] Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Srebro. The
implicit bias of gradient descent on separable data. The Journal of Machine Learning Research,
19(1):2822-2878, 2018.

[20] Colin Wei, Jason D Lee, Qiang Liu, and Tengyu Ma. Regularization matters: Generalization
and optimization of neural nets vs their induced kernel. In Advances in Neural Information
Processing Systems, pages 9712-9724, 2019.

[21] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
Technical report, Citeseer, 2009.

[22] Amos Storkey, Antreas Antoniou, Luke N Darlow, Elliot J Crowley, et al. Cinic-10 is not
imagenet or cifar-10. 2018.

[23] Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and Aleksander Madry.
Robustness may be at odds with accuracy. stat, 1050:11, 2018.

[24] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

[25] K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image Recognition. In 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 770-778, June
2016.

[26] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger. Densely Connected
Convolutional Networks. pages 2261-2269. IEEE, July 2017.

[27] Leslie N Smith. Cyclical learning rates for training neural networks. In 2017 IEEE Winter
Conference on Applications of Computer Vision (WACV), pages 464—-472. IEEE, 2017.

[28] Zhiyuan Li and Sanjeev Arora. An exponential learning rate schedule for deep learning. arXiv
preprint arXiv:1910.07454, 2019.

10



