- We thank the reviewers for their thoughtful and helpful feedback. We carefully went through the paper again in the past
- 2 few days and fixed all the typos and grammatical issues mentioned in the reviews. Below we will address the comments
- 3 regarding our results and techniques.
- 4 **Reviewer 1** Thank you again for your insightful and positive comments.
- 5 *The problem should be a little better motivated.* Agree. We motivated the problem in multiple ways as a novel
- 6 problem in functional estimation (line 14 to 21), as a generalization of the well-known Fisher's unseen species problem
- 7 (line 22 to 57), and as an interesting task with numerous practical applications (line 65 to 74). Nevertheless, we want
- to motivate the problem even better by adding examples of genetic research and scores of basketball players to the
- 9 introduction. We will also add the respective real-data experiments to the appendices.
- *Technical novelty* Yes, our estimator's construction makes use of some prior results in [15], [16], and [22]. The
- 11 combination might seem relatively simple in retrospect, but requires someone first to have the insight and realize the
- potential of the methods. In particular, one needs to properly manipulate each estimator component and provide tight
- analyses for both the upper and lower bounds. Besides, we made an effort to simplify the estimator (Appendix G) and
- multiple proofs (e.g., Appendices F and H) for technical beauty.
- Reviewer 2 Thank you for the thoughtful and encouraging feedback, and for pointing out the importance of under-
- standing how a large μ value will affect the practical performance of the estimator. The theoretical analysis already
- showed that the variance will become larger as μ grows. We will add additional experiments for the large- μ regime and
- comment on the results accordingly.
- 19 Reviewer 3 Thank you for the thorough and helpful comments. We really appreciate your effort in helping us correct
- 20 the typos and improve the clarity of the theorems.
- *Bounds on universal constants* Currently, the lower-bound constant c'_0 is 0.4, and the upper-bound constant c_0 is 3.0.
- 22 These might not be the best constants we can get because they were chosen to simplify the proofs. We will make all the
- four constants $(c, c_0, c', \text{ and } c'_0)$ explicit in the draft and also work on optimizing their values.
- 24 Reviewer 4 Thank you for your constructive and valuable insights.
- 25 *Replacing the word "reproducibility"* Yes, we agree with your opinion on the choice of words. Thanks for also
- providing the references on the word "reproducibility" and its usage in the scientific communities. We have modified
- our paper accordingly and replaced "reproducibility" by "multiplicity."
- 28 *Claim on "resolv(ing) this problem"* The claim simply refers to the fact that the lower bound matches the upper
- bound, up to constants in the exponents. The theorems require $\mu = \mathcal{O}(\log n)$, which translates to something like $a \ge 1$
- for $a \approx \log n/\mu$. Otherwise, the problem becomes relatively simple as we extrapolate no more than what has been
- observed. The condition of $a \ge 1$ was also required in our primary references [16, 22] and termed as "the interesting
- case" in the arXiv paper you mentioned. We appreciate the sharp observation and have updated the draft accordingly.
- 33 *Lower bound proof and support size estimation* Here is an over-simplified yet intuitive explanation. The paper [32] on
- support size estimation constructed nontrivial lower bounds for $m/\log m \ll k \ll m\log m$, where m is the sample size
- and 1/k is a lower bound on the minimum positive probability of the underlying distribution. Hence, for $\mu \ll \log m$,
- one can adjust k to be something like m/μ . Then, we can leverage the results in [32] and work in the regime where
- 37 every symbol in the extended sample (unseen) will appear at least μ times in expectation.
- 38 *Citing the paper: https://arxiv.org/abs/1902.05616.* Sure, we will cite the paper and comment on it appropriately.
- *The role of " $j \ge 1$ " in Lemma 6.* A typo, j should be s in the lemma. In fact, we removed this as it is unnecessary.