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We would like to thank the reviewers for the insightful remarks and comments. We address several concerns of the
reviewers as follows.

Main theoretical results and practical implications: R1 and R3. Our main theoretical result is that the Max-Product
algorithm can be exactly parameterized by the FGNN using number of parameters that are polynomial w.r.t. number of
rank-1 tensors required to represent the higher order potentials (Corollary 7 in the main text). In worst case, it may
require exponentially many parameters for arbitrary higher order potentials. However, we believe that there will be
multiple practical applications that have reasonablely sized representation. This will have to be verified empirically —
we have demonstrated this for error correcting codes which showed improved performance under bursty channel, and
for human motion prediction which showed state-of-the-art performance. Furthermore, in computer vision applications,
commonly used handcrafted higher order potentials, e.g. Potts model or Robust Potts Model [DOI:10.1007/s11263-008-
0202-0], can often be exactly or approximately represented using a moderate number of rank-1 tensors. FGNN is also
advantageous when the potential functions are unknown and only the features corresponding to the factor are provided.
In this case, we can use FGNN to learn the approximation of potential functions from data, where the size of the network
can be decided based on the computational budget or amount of available data (to control over-fitting). As FGNN can
exactly represent the Max-Product, it should be at least as powerful as the Max-Product algorithm. It can represent a set
of algorithms including the Max-Product, so by learning from data it may potentially learn a better inference algorithm
if Max-Product is not optimal. In our experiment, we show that FGNN outperforms the Max-Product algorithm.

Possible over-fitting for synthetic data: R1. In the synthetic data experiment, our goal is to train a better MAP
inference algorithm, and thus the MAP assignment is used as the target for all neural network based algorithms. In the
experiment, the number of all possible configurations is 22° =~ 10° for a length-30 binary chain structured MRF, and
our training set only has 90000 items. In this case, it is unlikely that a neural network that simply over-fits the training
set can have a good performance on the test set.

Testing on novel graph structures: R3 and R1. To address R3’s Chainlength  AD3 FGNN
concern that the algorithm is tested only on the same graph struc- (15.25) 88.95%  94.31%
ture as seen in training, we conducted a new experiment to train (25, 35) 88.18%  93.64%
the FGNN on fixed length-30 MRFs using the same protocol as (35,45  87.98%  91.50%

Dataset3, and test the algorithm on 60000 random generated chain  Table 1: Accuracy on dataset with different chain size.
MRF whose length ranges from 15 to 45 (the potentials are generated using the same protocol as Dataset3). The result
is in Table [T} which shows that the model trained on fixed size MRF can be generalized to MRF with different graph
structures. This also further addresses the overfitting issue raised by R1.

Factor without trivial representation of fixed dimension: R3. In the experiment on human motion prediction, the
potential functions are actually unknown and their representations are fully learned from data.

Variational inference: R1. The synthetic problems are MAP inference problems. As variation inference is designed
for marginal inference, it cannot be directly used. Indirectly however, by using the zero-temperature technique, the
variational inference can be applied to do MAP inference. By applying the zero-temperature technique, the objective
function of the variational inference becomes equivalent to that of AD3 and MPLP. Particularly, the AD3 algorithm is
guaranteed to converge to the optimal of that objective and thus it can be viewed as a variant of variational inference.

Improve the writing: R1. We will revise Section 3 to say that Corollary 7 is the main theoretical results of the paper
and do careful proofreading. For Algorithm 1, ®y r and ©y  are parameters of the Q and M net in the Variable to
Factor module, respectively. @z and Oy are parameters of the Q and M net in the Factor to Variable module.

Aggregation function: R2. We choose the “max” aggregation function because theo- -
retically “max” is invariant to the duplication of a element in the set, while “sum” or T
“average” is not. In real applications such as human motion prediction, different factor
may have different size, but for better parallelization we may need to pad all factor to the
same size. In this case, we may simply duplicate a node in factor to do this. We replaced
the “max” aggregation with “sum” aggregation in the LDPC experiment and typical

result is shown in Figure[I] where both algorithm achieve almost the same performance. . ° .
Figure 1: Comparison of “sum”
Training time: R2. The training time is in Table 6 of the supplementary file. and “max” aggregation.

Representativeness of the LDPC data: R2. In this experiment, as previous work [Kim et al.| |2018| [Zarkeshvari
and Banihashemil, 2002] we do not have any assumption on the input signal, thus both the train and test set the input
signal are uniformly sampled from {0, 1}*®. We can add error bars in the next version to indicate how well the results
represent uniformly distributed inputs.

Relation with Yoon ef al. and publishing code: R3. We will add discussion on relation with Yoon et al., which is on
pairwise potentials, as well as detailed experiment settings and the url to the source code in the next version.



