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Abstract

A good teacher can adjust a curriculum based on students’ learning history. By
analogy, in this paper, we study the dynamics of a deep neural network’s (DNN)
performance on individual samples during its learning process. The observed
properties allow us to develop an adaptive curriculum that leads to faster learning
of more accurate models. We introduce dynamic instance hardness (DIH), the
exponential moving average of a sample’s instantaneous hardness (e.g., a loss, or
a change in output) over the training history. A low DIH indicates that a model
retains knowledge about a sample over time. For DNNs, we find that a sample’s
DIH early in training predicts its DIH in later stages. Hence, we can train a model
using samples mostly with higher DIH and safely deprioritize those with lower
DIH. This motivates a DIH guided curriculum learning (DIHCL) procedure.
Compared to existing CL methods: (1) DIH is more stable over time than using
only instantaneous hardness, which is noisy due to stochastic training and DNN’s
non-smoothness; (2) DIHCL is computationally inexpensive since it uses only
a byproduct of back-propagation and thus does not require extra inference. On
11 datasets, DIHCL significantly outperforms random mini-batch SGD and recent
CL methods in terms of efficiency and final performance. The code of DIHCL
is available at https://github.com/tianyizhou/DIHCL.

1 Introduction

A curriculum plays an important role in human learning. Given different curricula of the same
training materials, students’ learning efficiency and performance can vary drastically. A good teacher
is able to choose the contents of the next stage of learning according to a student’s past performance.
Analogously, in machine learning, instead of training the model with a random sequence of data,
recent work in curriculum learning (CL) [4, 25, 17, 52, 13] shows that manipulating the sequence of
training data can improve both training efficiency and model accuracy. In each epoch, CL selects a
subset of training samples based on the difficulty and/or the informativeness of each sample — this is
usually measured using instantaneous feedback from the model (e.g., the loss). CL then uses only
these samples to update the model. Inspired by human learning curricula, a schedule of training
samples is constructed (e.g., usually from easy to hard), sometimes combining with other criteria
(e.g., diversity). As exhibited in previous work, CL can help to avoid local minima, improve the
training efficiency, and can lead to better generalization performance.

Instantaneous hardness, however, does not take the training history of each sample into account.
When applied to deep neural network (DNNs) training, and due to the non-smooth/non-convex nature
of the loss and the randomness of stochastic gradient descent (SGD), the instantaneous hardness of
each sample can change dramatically between consecutive epochs, so it is not reflective of the utility
of each sample in the future. This results in a large difference between training sets selected over
successive epochs, leading to an inconsistency of optimization objectives and gradients, and making
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training less stable. Furthermore, keeping instantaneous hardness up to date requires extra inference
steps of a model over all the samples, which can be expensive for DNNs [7, 15]. Though some
recent work finds that data selection within each mini-batch [18] or based on the latest evaluated
(but outdated) loss [28] may still perform well, this selection can be sub-optimal and unstable.

In this paper, we study the training dynamics of DNNs on individual samples from which a more
accurate hardness measure can be computed that does not require extra inference and that can
significantly improve performance. We study the difficulty a model has over time (i.e., training
epochs) in learning each training sample. We introduce “dynamic instance hardness (DIH)” as the
exponential moving average of an instantaneous hardness measure of a sample over time. We use
three types of instantaneous hardness to compute DIH (fully defined in Section 2): the loss; the
loss change; and the prediction flip (the 0-1 indicator of whether the prediction correctness changes)
between two consecutive time steps. The first has been commonly used in CL, while the latter two
capture a form of momentum of the loss/prediction.

We exploit several DIH properties that enable more effective CL approaches. Firstly, DIH can vary
dramatically between different samples. Samples with smaller DIH seem to be more memorable
(i.e., are retained more easily), while samples with larger DIH are harder to learn and retain. While
the model is more likely to stay at a minimum of the easy samples’ loss, its prediction on the hard
samples is less stable under changes in optimization parameters (e.g., the learning rate). Secondly,
unlike instantaneous hardness, the DIH status of a sample becomes consistent only after a few epochs.
That is, a sample’s DIH value converges quickly to its final relative position amongst all of the
samples. For example, if a sample’s DIH quickly becomes small, it stays small relative to the other
samples; if it becomes large, it stays there. We can therefore accurately identify categories of hard
and easy samples relatively early in the course of training. Thirdly, the DIH of each sample tends to
monotonically decrease during training. This implies that the learning process strives for better local
minimum for all samples, i.e., while easy samples stay easy throughout training, the hard samples
also become easier the more we train on them.

These properties motivate a natural curriculum learning strategy “DIH guided curriculum learning
(DIHCL)” that keeps training the model on those samples that have historically been hard since
the model does not perform well on them. By contrast, it is safe to revisit easy samples (those with
small DIH values) less frequently because the model is more likely to stay at those samples’ minima.
Hence, DIHCL helps a model focus on that which it finds difficult. This is similar to strategies that
improve human learning, such as the Leitner system for spaced repetition [26]. This is also analogous
to boosting [37] — in boosting, however, we average the instantaneous sample performance of
multiple weak learners at the current time, while in DIHCL we average the instantaneous sample
performance of one strong learner over the training history.

At each training step, DIHCL selects a subset of samples according to their DIH values, where the
hard samples have higher probabilities of being selected relative to the easy samples. The model
is updated by (stochastic) gradients computed on the selected samples. We then update the DIH
of the selected samples by using their instantaneous hardness, a byproduct of back-propagation
(since it needs to perform inference at first, e.g., a forward-propagation of a DNN). This significantly
improves the efficiency of previous CL methods, which rely on extra inference steps to evaluate the
instantaneous hardness of all the samples. Here, it is safe to update only the DIH of the selected
samples since the unselected ones have smaller and decreasing DIH values (due to the observed
properties of DIH) and thus keeping a stale DIH for them will not reduce their chance of being
selected in the future steps. As mentioned earlier, in the training of DNNs, the hardness ranking
of each sample by DIH will quickly converge after a few training steps and remains consistent for
future steps. Those early steps provide the opportunity for the necessary exploration to ensure that
hardness ranking is via DIH is accurate. To improve the exploration efficiency, DIHCL sweeps
through the entire training set for the first few epochs and then starts to select training samples by
DIH-weighted subset (random) sampling, and we gradually decrease the subset size during training.
We provide several options for weighted sampling, using different distributions, and we integrate
subset diversity into the selection criteria as well when feasible. Empirically, we evaluate several
variants of DIHCL and compare them against random mini-batch SGD as well as recent curriculum
learning algorithms on 11 datasets. DIHCL shows an advantage over other baselines in terms both of
time/sample efficiency and test set accuracy.
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1.1 Related Work

Early curriculum learning (CL) [20, 3, 40] work shows that feeding an optimized sequence of training
sets (i.e., a curriculum), that can be designed by a human expert [4], into the training algorithms can
improve the models’ performance. Self-paced learning (SPL) [25, 42, 41, 43] chooses the curriculum
based on hardness (e.g., per-sample loss) during training. SPL selects samples with smaller loss, and
gradually increases the subset size over time to cover all the training data. Self-paced curriculum learn-
ing [17] combines the human expert in CL and loss-adaptation in SPL. SPL with diversity (SPLD) [16]
adds a negative group sparse regularization term to SPL and increases its weight to increase selection
diversity. Machine teaching [20, 55, 35] aims to find the optimal and smallest training subset in order
to produce similar performance as when all the data is used. Minimax curriculum learning (MCL) [52]
argues that the diversity of samples [47, 19, 46] is more critical in early learning since it encourages ex-
ploration, while completeness becomes more useful later. It also uses a form of instantaneous instance
hardness (loss) but is not dynamic like DIH, and it formulates optimization as a minimax problem.
Compared to the above methods, DIHCL has the following advantages: (1) DIHCL improves the
efficiency of CL since extra inference on the entire training set per step is not required; and (2) DIHCL
uses DIH as the metric for hardness which is a more stable measure than instantaneous hardness.

Previous works [39, 36, 38, 54] use “instance hardness” defined as 1 � pw(yi|xi), i.e., the
complement of the posterior probability of label yi given input xi for the ith sample under model
w, which does not take the training dynamics into account. More recently, a special case of DIH
has been studied in [45], which computes the mean of the prediction flips over all the steps after
training has occurred. They show that removing samples with the smallest prediction flip average
from the training set leads to less degradation of generalization performance than removing random
samples. Based on this observation, they propose to train a small neural net beforehand to determine
hard samples, which are then used to train a large neural net. By contrast, our study of DIH focuses
on its dynamic properties during training, which inspires a novel curriculum learning strategy that
can be applied to each step before training completes. A similar idea has been recently studied for
semi-supervised learning [53]. Historical dynamics has been used to estimate prediction uncertainty
over time in [7] and MentorNet [18]. However, the former treats all historical steps equally, while
the latter still relies on the instantaneous difference of a loss to its historical moving average.

Figure 1: Top: DIH (running mean of loss) vs. Bottom:
instantaneous loss of 50 randomly selected samples from CI-
FAR10 on WideResNet-28-10.

The training dynamics in this paper is also
related to the memorization studied in [51],
which considers overfitting on noisy data
with random labels. We discuss this in the
appendix (see Figure 9) showing that noisy
data has distinctive training dynamics. Our
observations also suggest that learning sim-
ple patterns [1] happens mainly from the
easily memorable samples early during
training. Our problem is distinct from
catastrophic forgetting [21], which consid-
ers sequential learning of multiple tasks,
where later learned tasks make the model
forget what has been learned from earlier tasks. In our work, we consider single task learning.

2 Dynamic Instance Hardness
Let at(i) be a measure of instantaneous (i.e., at time t) hardness of a sample (xi, yi) with feature xi

and ground truth label yi, where i is a sample index and t is training iteration (typically, a count of
mini-batches that so far have been processed). We consider three different metrics of instantaneous
instance hardness in this work:

(A) Loss evaluation `(yi, F (xi;wt)), where `(·, ·) is a standard loss function and F (·;w) is the
model where w are the model parameters;

(B) Loss change |`(yi, F (xi;wt))� `(yi, F (xi;wt�1))| between two consecutive time steps;
(C) Prediction flip |1[ŷti = yi]� 1[ŷt�1

i = yi]|, where ŷti is the prediction of sample i in step t,
e.g., argmaxj F (xi;wt)[j] for classification.

(A) corresponds closely to the “instance hardness” of [39]. However, (B) and (C) require information
from previous time steps and aim to capture a form of momentum. Nevertheless, we consider (A),
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(B), and (C) all to be variations of instantaneous instance hardness since they use information from
only a local time window around iteration t. We define dynamic instance hardness (DIH) as a running
average over an instantaneous instance hardness, defined and computed recursively as

rt+1(i) =

⇢
� ⇥ at(i) + (1� �)⇥ rt(i) if i 2 St

rt(i) else ,
(1)

where � 2 [0, 1] is a discount factor, St ✓ V , and V = [n] is the set of all n training sample indices.
St is the set of samples used for training at time t, e.g., a subset selected by some curriculum learning
method (or a random batch in some cases). In general, St should be large early in training, but as
rt(i) decreases for many samples, choosing a smaller but wiser St will result in faster training and
more accurate models. The work of [45] uses a special case of DIH at t = T (T is the total number
of training steps) in Eq. (1) with � = 1/t+1, St = V , and at(i) being prediction flips (case (C)).

Three groups of samples computed
after epoch 10

Three groups of samples computed
after epoch 40

Three groups of samples computed
after epoch 210

Losses (mean and std.) for the three groups
generated after epoch 10

Losses (mean and std.) for the three groups
generated after epoch 40

Losses (mean and std.) for the three groups
generated after epoch 210

Figure 2: LEFT: Averaged prediction-flip and RIGHT: losses (mean and std.) of the three groups of samples
partitioned by a DIH metric (i.e.,running mean of prediction-flip) computed at epoch 10 (top), 40 (middle),
and 210 (bottom) during training a WideResNet-28-10 on CIFAR10. Early DIH (epoch 40) can already predict
the forgettable and memorable samples at much later stages (epoch 210). The failed partition based on epoch
10 shows the importance of sufficient exploration needed for DIH to accurately measure hardness over time.

Experimental setting: When training DNNs, as shown in Figure 1, the instantaneous hardness mea-
sure (e.g., the per-sample loss) is usually too noisy and unstable to reflect the learning progress of the
model. DIH, on the other hand, is a simple alternative descriptor of the training dynamics that averages
out the noise. In the following, we use DIH as a tool to study the training dynamics of DNNs on indi-
vidual samples. We train a WideResNet of depth 28 and width factor 10 on the CIFAR10 dataset by
random mini-batch SGD, and apply a modified cosine annealing learning rate schedule [29] for multi-
ple epochs of increasing length (300 epochs in total) and a decaying target learning rate. We contend
that a cyclic learning rate suits our study because: (1) it includes the most commonly used monotone
decreasing schedule since the learning rate in each cycle is decreasing; (2) compared to a monotone
decreasing schedule, it can uncover the dynamic properties of DIH in more scenarios such as increas-
ing learning rates and different learning rate decay speeds. In the study, we compute DIH using two
types of instantaneous instance hardness, where at(i) is either loss or prediction flips (i.e., cases (A)
or (C)). Since we do not apply any curriculum learning just yet, we always keep St = V = [50000].

Instead of visualizing rt(i) for all i 2 [50000] training samples, we use rt(i) (with at(i) being
prediction flips) to categorize them into three groups, and we do this at epochs 10 (early training), 40
(middle), and 210 (later training). At epoch 40, the 10,000 samples with the largest r40(i) comprise
the first group, the 10,000 samples ones with the smallest r40(i) comprise the next group, and the
remaining 30,000 samples comprise the final group. We will show that the training dynamics of the
three groups have different characteristics. In Figure 2, we plot the dynamics of the average prediction
flips over each group (left plot) and the mean/standard deviation of loss in each group (right plot).

DNNs have very different training dynamics on samples with small and large DIH. At any step-
t, we observe (in our empirical studies) that a group of samples with small rt(i) are quickly learned in
early epochs and, thereafter, their losses remain small with predictions almost unchanged. Since the
behaviour on these samples is stationary even when the model changes by many steps with varying
step sizes over the loss landscape along noisy SGD directions, this implies that the model reaches
a point that is a relatively flat local minimum common amongst these samples. This suggests that
it is safe to revisit these samples less frequently. By contrast, the samples with large rt(i) show a
large variance during training, i.e., their losses oscillate between small and large values and their
predictions frequently change, indicating difficulty. Their dynamics on average trace the changes of
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Figure 3: LEFT: Entry Ai,j (i < j) is the percentage of shared samples between the 10k samples with the
largest DIH computed in epoch 15i and epoch 15j. RIGHT: Entry Ai,j (i < j) is the percentage of shared
samples between the 10k samples with the smallest DIH computed in epoch 15i and epoch 15j. It shows that
both the hard and easy samples in the future are predictable using the DIH values computed in early epochs.

learning rate, which implies that doing well on these samples is achieved only at relatively sharp local
minima. This suggests that the model learns and generalizes better and faster on the easy samples than
the hard ones. Similar to human learning [26], a natural strategy would learn the hard samples more
frequently (to search for better local minima) while reducing the reencounter frequency of the easy,
already learnt, ones. This can also reduce computation since it is focused more where it is needed.

We can use DIH to identify the easy and hard samples accurately, but do we need to pay the price of
training a model until convergence like [45] in order to get the DIH values? By comparing the plots
with different t in Figure 2, we can see that DIH in early epochs suffices to identify the easy vs.
the hard samples. The samples with small DIH at epoch 40 will remain relatively small compared to
other samples even at later epochs. The hard (large DIH) samples remain hard in the future. That is,
based on rt(i) (even for early stages when t is not large), we surmise that it will be prudent to apply
additional training effort on hard samples and begin de-emphasizing the already learnt easy samples.

10 samples with large DIH at Epoch 40
10 samples with small DIH at Epoch 40

10 samples with large DIH at Epoch 40
10 samples with small DIH at Epoch 40

10 samples with large DIH at Epoch 40
10 samples with small DIH at Epoch 40

Figure 4: The three strategies for DIH on 10 hard and 10
easy samples, each that have been randomly sampled from the
top 10k samples with the largest/smallest DIH at Epoch 40.

We empirically verify that the samples with
large/small DIH in the future can be pre-
dicted by only using the DIH during early
epochs. In Figure 3, we show the overlap
rate of hard/easy samples between pairs of
epochs as two upper-triangle matrices. For
example, given Ui, the 10k samples with
the largest DIH in epoch 15i, and Uj for
any j > i, Ai,j = |Ui\Uj |/10000 for the ma-
trix A in the left plot. Similarly, the matrix
in the right plot measures the overlap rate
for the 10k samples with the smallest DIH
between epoch 15i and epoch 15j. They
show that after a few early epochs, DIH
can accurately predict the hard and easy
samples in the future. This verifies our
statement in the last paragraph. In addition,
it shows that |Ui\Uj |/10000 between consecutive epochs 15i and 15j is close to 100%, which suggests
that DIH is a stable, consistent, and smoothly varying measure. This allows us to save computation by
lazily updating DIH only on a subset of samples St per step during training, as we do in the definition
of DIH in Eq. (1).

Figure 5: Correlation between DIH in two training experi-
ments using different random seeds.

We find that DIH on the same sample
is robust and insensitive to the random-
ness of training. To verify this, we run
the above experiment twice on CIFAR10
using two different random seeds. We then
compute the overlap rate between the 10k
samples with the largest/smallest DIH at
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each epoch. Since DIH performs as a score to select/rank samples in our approach, we can use
Kendall rank correlation coefficient (i.e., Kendall’s ⌧ ) to evaluate the correlation between DIH values
of a sample at the same epoch of the two random experiments. We report the overlap rates and
Kendall’s ⌧ (with its p-value) in Figure 5. During training, the two overlap rates and Kendall’s ⌧ all
quickly grow to > 0.6 while the p-value stays near 0. This indicates a strong correlation between the
DIH of the two random trials.

Previous CL methods using instantaneous hardness need to evaluate it for all samples before selecting
any sample in each step, which involves extra inference computation for the unselected samples. This
is expensive when training DNNs. While switching to DIH, such extra computation can be avoided.
Figure 4 shows that all three types ((A), (B), and (C)) of DIH metrics decrease during training for
both easy and hard samples. If our curriculum prefers selecting hard samples with large DIH, it is
safe to update their DIH lazily, since the stale DIH values for the unselected samples are greater than
their up-to-date true values, so the future steps will not miss informative samples. Updating DIH of
the selected samples requires only a byproduct of back-propagation, which is already available after
inference completes. This also indicates that as learning continues, samples become less informative,
so that we can select and train on fewer samples.

In the appendix, we further report and compare the dynamics in four scenarios using plots as Figure 2:
(1) under 100% label noise (Figure 9); (2) under 40% label noise (Figure 14); (3) training a smaller
DNN (Figure 10); and (4) using exponential decaying learning rate across epochs (Figure 13). They
show that (1) the dynamics revealed by DIH is entirely different for data with incorrect labels; (2)
clean and noisy labeled data exhibit different dynamics that can be distinguished by DIH; (3) DIH
values across samples are more different on deeper and wider DNNs, implying that large DNNs
are more data-selective in learning; and (4) DIH shows similar properties with other learning rate
schedules.

3 DIH guided Curriculum Learning
The above properties of DIH and training dynamics of DNNs naturally motivate a curriculum that
trains DNNs using hard samples (those with large DIH) and reduces learning tendency on easy ones.

3.1 A “Free” Curriculum

Algorithm 1 DIH Curriculum Learning (DIHCL-Greedy)
1: input: {(xi, yi)}ni=1, ⇡(·; ⌘), `(·, ·), F (·;w);

⌘1:T ; T, T0; �, �k 2 [0, 1]
2: initialize: w, ⌘1, k1 = n, r0(i) = 1 8i 2 [n]
3: for t 2 {1, · · · , T} do
4: if t  T0 then
5: St  [n];
6: else
7: Let St = argmaxS:|S|=kt

P
i2S rt(i);

8: end if
9: Apply optimization ⇡(·; ⌘) to update model:

wt  wt�1 + ⇡

 
rw

X

i2St

`(yi, F (xi;wt�1)); ⌘t

!

10: Compute normalized at(i) for i 2 St using Eq. (2);
11: Update DIH rt+1(i) using Eq. (1);
12: kt+1  �k ⇥ kt;
13: end for

We arrive at a curriculum learning
strategy that selects harder samples
to train the model at each step. And
since only a subset of samples at each
epoch are used to train on, and since
DIH is updated only for the selected
samples, we find that computation to
achieve a given accuracy is reduced.
We give a greedy version of DIHCL
in Algorithm 1, where {(xi, yi)}ni=1
is the training data, ⇡(·; ⌘) is an opti-
mization method such as SGD, ⌘1:T
are the T learning rates, and �k is
the reduction factor for subset sizes
kt. DIHCL trains using more samples
early on to produce an accurate initial
estimate of rt(i). This is indicated by
T0, the number of warm start epochs
over the whole training set. After it-
eration T0, we gradually reduce the
number of samples from k1 = n to kt thereby focusing on the most difficult samples as training
proceeds. At step t, we select subset St ✓ [n] with large rt�1(i) and then update the model by
training on St. We then update rt(i) via Eq. (1).

Since the learning rate can change over different steps, and large learning rates mean greater model
change, we normalize at(i) by the learning rate ⌘t�1

2. Specifically, we apply one of the following

2We use ⌘t�1 instead of ⌘t because at(i) is computed based on wt�1 before the weight update in step t.
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depending on which form of at(i) we are using (case (A), (B), or (C) above):
(A) at(i) `(yi, F (xi;wt�1))/⌘t,
(B) at(i) |`(yi, F (xi;wt�1))� `(yi, F (xi;w⌧t(i)�1))|/

Pt
t0=⌧t(i)

⌘t0 ,

(C) at(i) |1[ŷti = yi]� 1[ŷt�1
i = yi]|/

Pt
t0=⌧t(i)

⌘t0 ,
(2)

where ⌧t(i) < t� 1 indicates the most recent step before t� 1 when i was selected. The T0 warm
start epochs and the schedule of decreasing kt are necessary for early exploration since DIH is a
running mean over a sample’s dynamics and thus needs to revisit each sample to estimate its relative
DIH position. A simple method to further reduce training time in early stages is to extract and use
only a small and diverse subset of St. Inspired by MCL [52], after line 7, we reduce St to a subset of
size k0t = �k0kt (0 < �k0  1) by (approximately) solving the following submodular maximization.

max
S✓St,|S|k0

t

X

i2S

rt(i) + �tG(S) (3)

The function G : 2St ! R+ can be any submodular function [12], and hence we can exploit fast
greedy algorithms [33, 31, 32] to solve Eq. (3) with an approximation guarantee. We gradually
reduce preference for diversity as training proceeds by reduce �t by a factor 0  ��  1 at each step.

Table 1: The test accuracy (%) achieved by different methods training DNNs on 11 datasets (without pre-
training). We use “Loss, dLoss, Flip” to denote the 3 choices of DIH metrics based on (A), (B), and (C)
respectively. In all DIHCL variants, we apply diversity (and greedy submodular maximization using the lazier-
than-lazy-greedy procedure [32]) for Eq. (3) on only the datasets CIFAR10, CIFAR100, STL10, SVHN, KMNIST,
and FMNIST. In this case, the first T0 warm-start epochs of DNN training was used to also produce the feature
extractor z(x) to instantiate the facility location function. The other datasets did not employ diversity, and we
leave that to future work. For each dataset, the best accuracy is in blue, the second best is red, and third best green.

Curriculum CIFAR10 CIFAR100 Food-101 ImageNet STL10 SVHN KMNIST FMNIST Birdsnap Aircraft Cars

Rand mini-batch 96.18 79.64 83.56 75.04 86.06 96.48 98.67 95.22 64.23 74.71 78.73
SPL 93.55 80.25 81.36 73.23 81.33 96.15 97.24 92.09 63.26 68.95 77.61
MCL 96.60 80.99 84.18 75.09 88.57 96.93 99.09 95.07 65.76 75.28 76.98

DIHCL-Rand, Loss 96.76 80.77 83.82 75.41 87.25 96.81 99.10 95.69 65.62 79.00 80.91
DIHCL-Rand, dLoss 96.73 80.65 83.82 75.34 86.93 96.83 99.14 95.64 65.25 79.93 78.70
DIHCL-Exp, Loss 97.03 82.23 84.65 75.10 88.36 96.91 99.20 95.45 66.13 77.68 79.85
DIHCL-Exp, dLoss 96.40 81.42 84.75 75.62 89.41 96.80 99.18 95.50 66.59 79.72 81.48
DIHCL-Beta, Flip 96.51 81.06 84.94 76.33 86.88 97.18 99.05 95.66 65.48 78.49 80.13

3.2 Practical DIHCL using DIH-weighted Sampling

In line 7 of Alg. 1, we select St with the highest rt�1(i) values. In practice, we find adding
randomness to the selection procedure gives better performance as (1) exploration on samples with
small rt(i) are necessary to accurately estimate to rt(i), and (2) randomness of training samples
is essential to achieve a good quality solution w for non-convex models such as DNNs. Instead
of choosing the top kt samples greedily and deterministically, we perform a randomized greedy
procedure by sampling with probability pt,i / h(rt�1(i)), where h(·) is a monotone non-decreasing
function, similar to [27, 28]. Hence, we still prefer data points with high DIH. An ideal choice of
h(·) should balance between the exploration (under poorly estimated DIH values) and exploitation
(when DIH is well estimated). We propose the following three sampling methods to replace line
7 of Alg. 1, and give extensive evaluations in the experimental section.

DIHCL-Rand: Let h(rt(i)) = rt(i). We sample data with probability proportional to DIH values.

DIHCL-Exp: We trade-off exploration and exploitation similarly to Exp3 [2], which samples based
on the softmax value. We then reweigh the observation by the selection probability to encourage
exploration:h(rt(i)) = exp

hp
2 logn/n⇥ rt(i)

i
, at(i) at(i)/pt,i 8i 2 St.

DIHCL-Beta: We utilize the idea of Thompson sampling [44] and use a Beta prior distribution to
balance exploration and exploitation, i.e., h(rt(i)) ⇠ Beta(rt(i), c� rt(i)), where c is a sufficiently
large constant with c � rt(i), e.g., c = 1 when at(i) is prediction flip. The Beta distribution
encourages exploration when the difference between rt(i) and c� rt(i) is small.

4 Experiments
We train different DNNs by using variants of DIHCL, and compare them with three baselines,
vanilla random mini-batch SGD, self-paced learning (SPL) [25], and minimax curriculum learning
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Figure 6: Training DNNs by using DIHCL (and its variants), SPL [25], MCL [52], and random mini-batch
SGD on Food-101, Aircraft, CIFAR-10 and FMNIST. We use “Diverse” to denote DIHCL that further reduces
St by applying submodular maximization for Eq. (3). We report how test accuracy changes during training.

(MCL) [52] on 11 image classification datasets (without pre-training), i.e., (A) WideResNet-28-
10 [50] on CIFAR10 and CIFAR100 [24]; (B) ResNeXt50-32x4d [49] on Food-101 [6], FGVC
Aircraft (Aircraft) [30], Stanford Cars [23], and Birdsnap [5]; (C) ResNet50 [14] on ImageNet [11];
(D) WideResNet-16-8 on Fashion-MNIST (FMNIST) [48] and Kuzushiji-MNIST (KMNIST) [8];
(E) PreActResNet34 [14] on STL10 [9] and SVHN [34]. We use mini-batch SGD with a momentum
of 0.9 and a cyclic cosine annealing learning rate schedule [29] (multiple epochs with starting/target
learning rate decayed by a multiplicative factor 0.85). We use T0 = 5, � = 0.95, �k = 0.85
for all DIHCL variants, and gradually reduce k from n to 0.2n. We chose T0 = 5 since it is
sufficient to produce a reasonably good model to estimate DIH. We tried � = 0.95, 0.9, 0, 8 and they
perform similarly, e.g., for DIHCL-Rand Loss, on CIFAR10, � = 0.95, 0.9, 0, 8 lead to accuracy
of 96.76%, 96.75%, 96.78% respectively. We chose �k = 0.85 so we can reduce the size of St

from n to 0.2n in 10 epochs. On each dataset, we apply each method to train the same model for
the same number of epochs, but each method may select a different number of samples per epoch.
More details about the datasets and settings can be found in the appendix. For DIHCL variants
that further reduce St by solving Eq. (3), we use �1 = 1.0, �� = 0.8, �k0 = 0.4 and employ the
“facility location” submodular function [10] G(S) =

P
j2St

maxi2S !i,j where !i,j represents the
similarity between sample xi and xj . We utilize a Gaussian kernel for similarity using neural net
features (e.g., the inputs to the last fully connected layer in our experiments) z(x) for each x, i.e.,
!i,j = exp

�
�kz(xi)�z(xj)k2/2�2

�
, where � is the mean value of all the k(k�1)/2 pairwise distances.
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Figure 7: Wall clock training time of DIHCL (and its variants),
SPL [25], MCL [52], and random mini-batch on ImageNet (top)
and Food-101 (bottom).

In Figure 6, we show how the test set
accuracy changes when increasing the
number of training batches in each cur-
riculum learning method on 4 datasets.
In Figure 7, we report wall-clock train-
ing time on 2 datasets. The results for
other datasets can be found in the ap-
pendix, together with the wall-clock
time for (1) the entire training and
(2) the submodular maximization part
in DIHCL with diversity and MCL.
The final test accuracy achieved by
each method is reported in Table 1.
DIHCL and its variants show signifi-
cantly faster and smoother gains on test accuracy than baselines during training especially at earlier
stages. DIHCL also achieves higher final accuracy and shows improvements in sample efficiency
(meaning they reach their best performance sooner, after less computation has taken place). MCL can
reach similar performance as DIHCL on some datasets but it shows less stability and requires more
relative computation for submodular maximization. We also observe a similar instability of SPL.
The reason is that, compared to the methods that use DIH, both MCL and SPL deploy instantaneous
instance hardness (i.e., current loss) as the score to select samples, a measure that is more sensitive to
randomness and perturbation that occurs during training. Compared to MCL and DIHCL, SPL and the
random mini-batch curriculum method requires more epochs to reach their best accuracy, since they
spend training effort on the memorable samples but lack repeated-learning of the forgettable ones. Al-
though every variant of DIHCL achieves the best accuracy among all the evaluated methods on some
datasets, DIHCL-Exp using loss and DIHCL-Beta using prediction flips, as the instantaneous hard-
ness, exhibit advantages over the other DIHCL variants. Particularly, DIHCL-Exp with dLoss(metric
(B)) is the best variant across datasets (achieving the top-2 performance on 8 out of the 11 datasets).

Figure 8: Comparison of DIHCL variants on training WideResNet-28-10 on CIFAR10.

We conduct an ablation study comparing several possible variants of DIHCL with their results
reported in Figure 8. Specifically, we (1) change the cyclic cosine annealing learning rate to more
commonly used exponentially decaying learning rate and compare DIHCL with random mini-batches;
(2) reduce the number of warm starting epochs T0 from 5 to 3; (3) increase the budget k instead of
decrease it in Line 12 of Algorithm 1 using �k = 1.2; (4) use a smaller discounting factor �k = 0.8;
or (5) apply DIHCL on dataset containing 40% noisy (wrong) labels. The results show that original
DIHCL outperforms all the variants and is robust to noisy labels.

5 Conclusions
Inspired by human learning, we study a novel measure, “dynamic instance hardness (DIH)”, which
evaluates the hardness of a sample by using a running mean of an instantaneous hardness metric
over training history. We find that DIH is a powerful tool to study the learning dynamics of DNNs
and reveals several interesting properties of DNNs on individual samples during the course of
training. Based on these properties, we develop DIH guided curriculum learning (DIHCL) in order
to improve both the efficiency and final test-set performance without introducing notable extra costs,
since DIH needs only to be lazily updated using training by-products. We demonstrate DIHCL’s
advantages over several recent CL methods and random baseline on 11 datasets.
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Broader Impact

We propose DIH guided curriculum learning as a general framework to improve efficiency for training
machine learning models and their final performance. This potentially facilitates other applications
and research that involve training machine learning models, e.g., using machine learning models
to simulate high energy physics experiments, and automatically detect COVID-19 with CT scans.
Moreover, as DIHCL is inspired by human learning, our results on machine learning models can also
perhaps return the favor and be inspiring for those studying mechanisms behind true human learning.
For example, we may use a metric similar to DIH to select human learning materials to test if better
human learning efficiency can be achieved.
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