
A Dynamic Instance Hardness (cont.)

In this section, we conduct two additional empirical studies about DIH on data with noisy labels and
a smaller DNN as an extension of the one shown in the main paper.
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Figure 9: LEFT: Averaged prediction-flip and RIGHT: losses (mean and std.) of the three groups of samples
partitioned by a DIH metric (i.e.,running mean of prediction-flip) computed at epoch 10,40 and 60 during training
WideResNet-28-10 on CIFAR10 with random labels. In this setting, the random (but wrong) labels will be re-
membered very well after some training, and DIH in early stages loses the capability to predict the future DIH, i.e.,
they can only reflect the history but not the future. This characteristic of DIH might be helpful to detect noisy data.
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Figure 10: LEFT: Averaged prediction-flip and RIGHT: losses (mean and std.) of the three groups of samples
partitioned by a DIH metric (i.e.,running mean of prediction-flip) computed at epoch 10, 40, 140 and 210 during
training a smaller CNN on CIFAR10. It shows that the difference of memorable and forgettable samples is
not sufficiently obvious until very late training epochs, e.g., after epoch-140.

First, we conduct an empirical study of dynamic instance hardness during training a neural
net on very noisy data, as studied in [51] and [1]. In particular, we replace the ground truth labels
of the training samples by random labels, and apply the same training setting used in Section 2. Then,
we compute the running mean of prediction-flip for each sample at some epoch (i.e., 10, 40, 60),
and partition the training samples into three groups, as we did to generate Figure 2. The result is
shown in Figure 9. It shows 1) the group with the smallest prediction flip over history (left plot) is
possible to have large but unchanging loss as shown in the right plot; and 2) the DIH in this case can
only reflect the history but cannot predict the future. However, it also indicates that the capability of
DIH to predict the future is potential to be an effective metric to distinguish noisy data or adversarial
attack from real data. We will discuss it in our future work.
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Table 2: Details regarding the datasets and training settings (#Feature denotes the number of features
after cropping if applied), “lr_start” and “lr_target” denote the starting and target learning rate for the
first episode of cosine annealing schedule, they are gradually decayed over the remaining epochs.

Dataset CIFAR10 CIFAR100 Food-101 ImageNet STL10 SVHN

#Training 50000 50000 75750 1281167 5000 73257
#Test 10000 10000 25250 50000 8000 26032
#Feature (3, 32, 32) (3, 32, 32) (3, 224, 224) (3, 224, 224) (3, 96, 96) (3, 32, 32)
#Class 10 100 101 1000 10 10

#Epoch T 300 300 400 200 1200 300
BatchSize 128 128 80 256 128 128
lr_start 2⇥ 10�1 2⇥ 10�1 2⇥ 10�1 2⇥ 10�1 2⇥ 10�1 2⇥ 10�2

lr_target 5⇥ 10�4 5⇥ 10�4 1⇥ 10�4 1⇥ 10�4 5⇥ 10�4 1⇥ 10�3

Table 3: Details regarding the datasets and training settings (cont.)

Dataset Birdsnap FGVCaircraft StanfordCARs KMNIST FMNIST

#Training 47386 6667 8144 50000 50000
#Test 2443 3333 8041 10000 10000
#Feature (3, 224, 224) (3, 224, 224) (3, 224, 224) (1, 28, 28) (1, 28, 28)
#Class 500 100 196 10 10

#Epoch T 400 400 400 300 300
BatchSize 258 256 256 128 128
lr_start 4⇥ 10�1 4⇥ 10�1 4⇥ 10�1 4⇥ 10�2 4⇥ 10�2

lr_target 1⇥ 10�4 1⇥ 10�4 1⇥ 10�4 1⇥ 10�3 1⇥ 10�3

Second, we change the WideResNet to a much smaller CNN architecture with three convolu-
tional layers3. We apply the same training setting used in Section 2. Then, we compute the running
mean of prediction-flip for each sample at some epoch (i.e., 10, 40, 140, 210), and partition the
training samples into three groups, as we did to generate Figure 2. The result is shown in Figure 10.
Compared to DIH of training deeper and wider neural nets shown in Figure 2, the memorable and
forgettable samples are indistinguishable until very late stages, e.g., Epoch-140. This indicates that
using DIH in earlier stage to select forgettable samples into curriculum might not be reliable when
training small neural nets. We will leave explanation of this phenomenon to our future works.

Moreover, we provide a comparison of the smoothness between DIH and instantaneous loss on
individual samples in Figure 1. It shows that the DIH is a smooth and consistent measure of the
learning/memorization progress on individual samples. In contrast, the frequently used instantaneous
loss is much noisier, so selecting training samples according to it will lead to unstable behaviors
during training. In Figure 11, we also provide a comparison of DIH and instantaneous loss on the
two groups of samples in Figure 4, which shows a similar phenomenon.

B Experiments (cont.)

We use cosine annealing learning rate schedule for multiple epochs. The switching epoch between
each two consecutive episode for different datasets are listed below.

• CIFAR10, CIFAR100, SVHN, KMNIST, FMNIST:
(5, 10, 15, 20, 30, 40, 60, 90, 140, 210, 300);

• STL10: (20, 40, 60, 80, 120, 160, 240, 360, 560, 840, 1200)
= 4⇥ (5, 10, 15, 20, 30, 40, 60, 90, 140, 210, 300);

• ImageNet: (5, 10, 15, 20, 30, 45, 75, 120, 200);
• Food-101, Birdsnap, FGVC-Aircraft, StanfordCars:
(10, 20, 30, 40, 60, 90, 150, 240, 400) = 2⇥ (5, 10, 15, 20, 30, 45, 75, 120, 200);

3The “v3” network from https://github.com/jseppanen/cifar_lasagne.
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We report how the test accuracy changes with the number of training batches for each method, and
the wall-clock time for all the 11 datasets in Figure 15-18.

Figure 11: Top: DIH (running mean of loss) vs. Bottom: instantaneous loss of 10 samples randomly selected
from the top 10k samples with the largest(red) and the smallest(blue) DIH at epoch 40 of training of WideResNet-
28-10 on CIFAR10 (the same as Figure 4. It shows that for each individual sample from the two groups, DIH
smoothly decreases while the corresponding instantaneous loss is much noisier.

Figure 12: Large Figure 8: Comparison of DIHCL variants for training WideResNet-28-10 on CIFAR10.

Figure 13: TOP: Averaged prediction-flip and RIGHT: losses (mean and std.) of the three groups of samples
partitioned by a DIH metric (i.e., running mean of prediction flip) computed at epoch 40 when using exponential
decaying learning rate (instead of cyclic cosine annealing rate) across epochs (cycles). DIH exhibits similar
properties on identifying hard and easy samples for neural nets to learn.

Figure 14: Losses (mean and std.) of the three groups of samples partitioned by a DIH metric (i.e., running
mean of prediction flip) computed at epoch 40 when 40% of labels are randomly changed to another wrong class
(i.e., 40% symmetric noises on labels. We also show the losses on the clean samples with correct labels and
noisy samples with wrong labels, where the former exhibit lower DIH than the latter. Hence, DIH is robust to
label noises and can identify the hard and easy samples, which are mainly composed of the clean and noisy data
respectively in this scenario.
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Figure 15: Training DNNs by using DIHCL (and its variants), SPL [25], MCL [52], and random mini-batch
SGD on 3 datasets, i.e., CIFAR10, CIFAR100 and STL-10. We use “Diverse” to denote DIHCL that further
reduces St by applying submodular maximization for Eq. (3). We report how the test accuracy changes with the
number of training batches for each method, and the (log-scale) wall-clock time for 1) the entire training and 2)
the submodular maximization part in DIHCL with diversity and MCL.
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Figure 16: Training DNNs by using DIHCL (and its variants), SPL [25], MCL [52], and random mini-batch
SGD on 3 datasets, i.e., SVHN, Fashion MNIST and Kuzushiji MNIST. We use “Diverse” to denote DIHCL
that further reduces St by applying submodular maximization for Eq. (3). We report how the test accuracy
changes with the number of training batches for each method, and the (log-scale) wall-clock time for 1) the
entire training and 2) the submodular maximization part in DIHCL with diversity and MCL.
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Figure 17: Training DNNs by using DIHCL (and its variants), SPL [25], MCL [52], and random mini-batch
SGD on 3 datasets, i.e., ImageNet, Food-101 and Birdsnap. We report how the test accuracy changes with
the number of training batches for each method, and the wall-clock time for 1) the entire training and 2) the
submodular maximization part in MCL.
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Figure 18: Training DNNs by using DIHCL (and its variants), SPL [25], MCL [52], and random mini-batch
SGD on 2 datasets, i.e., FGVC Aircraft and Stanford Cars. We report how the test accuracy changes with
the number of training batches for each method, and the wall-clock time for 1) the entire training and 2) the
submodular maximization part in MCL.

Table 4: Test Acc (mean±variance) over 5 trials on two CIFAR datasets. It shows that the performance of
DIHCL is stable and does not suffer from high variance.

Curriculum CIFAR10 CIFAR100

DIHCL-Rand, Loss 96.74± 0.04 80.80± 0.16
DIHCL-Rand, dLoss 96.75± 0.06 80.73± 0.21
DIHCL-Exp, Loss 97.07± 0.11 82.31± 0.24
DIHCL-Exp, dLoss 96.44± 0.10 81.35± 0.27
DIHCL-Beta, Flip 96.48± 0.04 81.13± 0.18

19


	Introduction
	Related Work

	Dynamic Instance Hardness
	DIH guided Curriculum Learning
	A ``Free'' Curriculum
	Practical DIHCL using DIH-weighted Sampling

	Experiments
	Conclusions
	Dynamic Instance Hardness (cont.)
	Experiments (cont.)

