
Thank you for the thorough reviews and insightful comments.1

Clarifications We first address some of the smaller points raised by the reviewers. R1, we clarify that the loss function2

(line 287) is indeed a cross-entropy loss on the 1000 possible values for v0 % 1000. R1, the accuracy in Table 2 is (just3

as you surmised) the percent of examples in the test set that the model produces the exact correct result for. Recall4

that the test set has programs with lengths 20 through 100, which places them outside of the train distribution. R3, we5

clarify that the “soft instruction pointer” is the novel attention mechanism that the paper draws its title from. We discuss6

it in detail in Sections 4.2-4.4 and Section 5. We have revised the paper to clarify each of these points. R2, we like your7

suggestion of adding an overview diagram and will gladly make this addition for the camera-ready if accepted.8

Why GGNN? And a new baseline: R-GAT R3, the primary reason we elect in the paper to compare against the9

GGNN model rather than e.g. GAT or GraphSage is that GGNN is a more common model choice for program10

understanding tasks [1, 4–8]. Additionally Table 3 of [2] compares variants of common message passing GNN11

architectures (GGNN, GCN, and GAT) on the VariableMisuse task and finds the degree of variation in performance to12

be considerably smaller than that between the GGNN and IPA-GNN on learning to execute. So, we do not think that13

the comparatively small differences in these GNN architectures will yield significant differences on the learning to14

execute tasks.15

Nevertheless, we take R1 and R3’s suggestion to introduce a new baseline, R-GAT [3] (non-relational GAT lacks16

edge-types and so cannot distinguish between true and false branches of if statements). Preliminary results suggest17

similar performance to the GGNN. We will incorporate the R-GAT baseline results into our paper if accepted.18

“NoControl” model equation R1 asked about our claim that “GGNN = NoExecute and NoControl”. Indeed, we19

made a typographic error in Table 1, and we thank R1 for catching our mistake. The correct equation for a(2)t,n,n′ for the20

NoControl model is simply a
(2)
t,n,n′ = a

(1)
t,n. Please note the difference between this and what is printed in Table 1 in the21

paper. We checked and the error is purely typographic, not an error with the experiments themselves. We have now22

corrected this, and we hope this resolves your concern. With this fix in place, it should be apparent that the NoControl23

and NoExecute models interpolate between the IPA-GNN and GGNN model. When both the NoControl and NoExecute24

changes are simultaneously applied to the IPA-GNN model definition, the result is the GGNN model. R2, we hope25

this correction also addresses your request for improved evaluation of the individual components of the IPA-GNN. We26

stress for R2 that the primary purpose of the NoControl and NoExecute models is to determine the significance of the27

individual components of the IPA-GNN model. These models form an ablation study of sorts, but rather than ablating28

the individual components of the IPA-GNN model (which would render it useless) we replace them with the analogous29

component from the GGNN model. So we think of this more as an “interpolation” study than an “ablation” study, but it30

serves the same purpose.31

Significance of improvement We note a disagreement between the reviewers about the significance of the improve-32

ment our architecture contributes (26.7% → 43.8% and 17.2% → 28.3% out-of-distribution accuracy on full and partial33

program execution respectively). R3 notes that this improvement is not strong enough. We think this improvement34

is more than enough to warrant publication, and respectfully request that R3 reconsider their stance. We hope the35

reviewers get to discuss this point in their post author response discussions.36
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