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Abstract

Automated machine learning (AutoML) can produce complex model ensembles by
stacking, bagging, and boosting many individual models like trees, deep networks,
and nearest neighbor estimators. While highly accurate, the resulting predictors
are large, slow, and opaque as compared to their constituents. To improve the
deployment of AutoML on tabular data, we propose FAST-DAD to distill arbitrarily-
complex ensemble predictors into individual models like boosted trees, random
forests, and deep networks. At the heart of our approach is a data augmentation
strategy based on Gibbs sampling from a self-attention pseudolikelihood estimator.
Across 30 datasets spanning regression and binary/multiclass classification tasks,
FAST-DAD distillation produces significantly better individual models than one
obtains through standard training on the original data. Our individual distilled
models are over 10ˆ faster and more accurate than ensemble predictors produced
by AutoML tools like H2O/AutoSklearn.

1 Introduction

Figure 1: Normalized test accuracy vs. speed
of individual models and AutoML ensembles,
averaged over all 30 datasets. TEACHER de-
notes the performance of AutoGluon; H2O and
autosklearn represent the respective AutoML tools.
GIB-1 indicates the results of FAST-DAD after 1
round of Gibbs sampling. BASE denotes the stu-
dent model fit on original data. GIB-1/BASE dots
represent the model Selected (out of the 4 types)
based on validation accuracy for each dataset.

Modern AutoML tools provide good out-of-the-box
accuracy on diverse datasets. This is often achieved
through extensive model ensembling [1–3]. While
the resultant predictors may generalize well, they
can be large, slow, opaque, and expensive to deploy.
Fig. 1 shows that the most accurate predictors can be
10,000 times slower than their constituent models.

Model distillation [4, 5] offers a way to compress
the knowledge learnt by these complex models into
simpler predictors with reduced inference-time and
memory-usage that are also less opaque and easier to
work with. In distillation, we train a simpler model
(the student) to output similar predictions as those
of a more complex model (the teacher). Here we
use AutoML to create the most accurate possible
teacher, typically an ensemble of many individual
models via stacking, bagging, boosting, and weighted
combinations [6]. Unfortunately, distillation typically
comes with a sharp drop in accuracy.

˚Equal contribution.
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Our paper mitigates this drop via FAST-DAD, a technique to produce Fast-and-accurate models via
Distillation with Augmented Data. We apply FAST-DAD to large stack-ensemble predictors from
AutoGluon [1] to produce individual models that are over 10,000ˆ faster than AutoGluon and over
10ˆ faster, yet still more accurate, than ensemble predictors produced by H2O-AutoML [7] and
AutoSklearn [2].

Motivation. A key issue in distillation is that the quality of the student is largely determined by the
amount of available training data. While standard distillation confers smoothing benefits (where the
teacher may provide higher-quality prediction targets to the student [5, 8]), it incurs a student-teacher
statistical approximation-error of similar magnitude as when training directly on original labeled
dataset. By increasing the amount of data available for distillation, one can improve the student’s
approximation of the teacher and hence the student’s accuracy on test data (assuming that the teacher
achieves superior generalization error than fitting the student model directly to the original data). The
extra data need not be labeled; one may use the teacher to label it. This enables the use of density
estimation techniques to learn the distribution of the training data and draw samples of unlabeled data.
In fact, we need not even learn the full joint distribution but simply learn how to draw approximate
samples from it. We show that the statistical error in these new samples can be traded off against the
reduction in variance from fitting the student to a larger dataset. Our resultant student models are
almost as accurate as the teacher while being far more efficient/lightweight.

The contributions of this paper are as follows:

1. We present model-agnostic distillation that works across many types of teacher/student mod-
els and various supervised learning problems (binary/multiclass classification, regression).
This is in contrast to problem and architecture-specific distillation techniques [4, 5, 9, 10].

2. We introduce a maximum pseudolikelihood model for tabular data that uses self-attention
across covariates to simultaneously learn all of their conditional distributions.

3. We propose Gibbs sampling based on these conditional estimates to efficiently augment
the dataset used in distillation. Our approach avoids estimating multivariate features’ joint
distribution, and enables control over sample-quality and diversity of the augmented dataset.

4. We report a comprehensive distillation benchmark for tabular data which studies 5 distillation
strategies with 4 different types of student models over 30 regression/classification datasets.

Although our techniques can be adapted to other modalities, we focus on tabular data which has been
under-explored in distillation despite its ubiquity in practical applications. Compared to typical data
tables, vision and language datasets have far larger sample-sizes and with easily available data; data
augmentation is thus not as critical for distillation as it is in the tabular setting.

2 Related Work

While distillation and model compression are popular in deep learning, existing work focuses
primarily on vision, language and speech applications. Unlike the tabular settings we consider here,
this prior work studies situations where: (a) unlabeled data is plentiful; (b) there are many more
training examples than in typical data tables; (c) both teacher and student are neural networks; (d) the
task is multiclass classification [5, 10–14].

For tabular data, Breiman and Shang [15] considered distilling models into single decision trees, but
this often unacceptably harms accuracy. Recently, Vidal et al. [9] showed how to distill tree ensembles
into a single tree without sacrificing accuracy, but their approach is restricted to tree student/teacher
models. Like us, Bucilua et al. [4] considered distillation of large ensembles of heterogeneous
models, pioneering the use of data augmentation in this process. Their work only considered binary
classification problems with a neural network student model; multiclass classification is handled in a
one-vs-all fashion which produces less-efficient students that maintain a model for every class. Liu
et al. [16] suggest generative-adversarial networks can be used to produce better augmented data, but
only conduct a small-scale distillation study where learners are random forest models.

3 From Function Approximation to Distillation

We first formalize distillation to quantify the role of the auxiliary data in this process. Consider a
dataset pXn, Ynq where Xn “

 
xi P X Ä Rd

(n

i“1
are observations of some features sampled from

distribution p, and Yn “ tyi P Yuni“1 are their labels sampled from distribution py|x. The teacher
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f : X Ñ Y is some function learned e.g. via AutoML that achieves good generalization error:

Rrf s :“ Epx,yq„p r`pfpxq, yqs
where loss ` measures the error in individual predictions. Our goal is to find a model g from a
restricted class of functions G Ä L

2pX q such that Rrgs is smaller than the generalization error of
another model from this class produced via empirical risk minimization.

Approximation. Distillation seeks some student g˚ that is “close” to the teacher f . If }f ´ g
˚}8 § ✏

over X and if the loss function ` is Lipschitz continuous in fpxq, then g
˚ will be nearly as accurate

as the teacher (R rg˚s « R rf s). Finding such a g
˚ may however be impossible. For instance, a

Fourier approximation of a step function will never converge uniformly but only pointwise. This
is known as the Gibbs phenomenon [17]. Fortunately, `8-convergence is not required: we only
require convergence with regard to some distance function dpfpxq, gpxqq averaged over p. Here d is
determined by the task-specific loss `. For instance, `2-loss can be used for regression and the KL
divergence between class-probability estimates from f, g may be used in classification. Our goal
during distillation is thus to minimize

Dpf, g, pq “ Ex„p rdpfpxq, gpxqqs . (1)

This is traditionally handled by minimizing its empirical counterpart [5]:

Demppf, g,Xnq “ 1

n

nÿ

i“1

dpfpxiq, gpxiqq. (2)

Rates of Convergence. Since it is only an empirical average, minimizing Demp over g P G will give
rise to an approximation error that can bounded, e.g. by uniform convergence bounds from statistical
learning theory [18] as Op

a
V {nq. Here V denotes the complexity of the function class G and n is

the number of observations used for distillation. Note that we effectively pay twice for the statistical
error due to sampling pXn, Ynq from p. Once to learn f and again while distilling g

˚ from f using
the same samples.

There are a number of mechanisms to reduce the second error. If we had access to more unlabeled
data, say X

1
m with m " n drawn from p, we could reduce the statistical error due to distillation

significantly (as empirically demonstrated in Fig. S2). While we usually cannot draw from p for
tabular data due to a lack of additional unlabeled examples (unlike say for images/text), we might
be able to draw from a related distribution q which is sufficiently close. In this case we can obtain a
uniform convergence bound:

Lemma 1 (Surrogate Approximation) Assume that the complexity of the function class G is
bounded under dpfpxq, ¨q and dpfpxq, gpxqq § 1 for all x P X and g P G. Then there exists a
constant V such that with probability at least 1 ´ � we have

Dpf, g˚
, pq § Demppf, g˚

, X
1
mq `

a
pV ´ log �q {m ` }p ´ q}1 . (3)

Here X
1
m are m samples from q and g

˚ P G is chosen, e.g. to minimize Demppf, g,X 1
mq.

Proof This follows directly from Hölder’s inequality when applied to Dpf, g, pq ´ Dpf, g, qq “≥
lpfpxq, gpxqqpppxq ´ qpxqqdx § C}p ´ q}1. Next we apply uniform convergence bounds to the

difference between Demppf, g,X 1
mq ´ Dpf, g, qq. Using VC bounds [18] proves the claim.

The inequality (3) suggests a number of strategies when designing algorithms for distillation. When-
ever p and q are similar in terms of the bias }p ´ q}1 being small, we want to draw as much data as
we can from q to make the uniform convergence term vanish. However if q is some sort of estimate, a
nontrivial difference between p and q will usually exist in practice. In this case, we may trade off the
variance reduction offered by extra augmented samples and the corresponding bias by drawing these
samples from an intermediate distribution that lies in between the training data and the biased q.

4 FAST-DAD Distillation via Augmented Data

The augmentation distribution q in Lemma 1 could be naively produced by applying density estimation
to the data Xn, and then sampling from the learnt density. Unfortunately, multivariate density
estimation and generative modeling are at least as difficult as the supervised learning problems
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AutoML aims to solve [19]. It is however much easier to estimate ppxi|x´iq, the univariate conditional
of the feature xi given all the other features x´i in datum x “ pxi

, x
´iq. This suggests the following

strategy which forms the crux of FAST-DAD:

1. For all features i: estimate conditional distribution ppxi|x´iq using the training data.
2. Use all training data x P Xn as initializations for a Gibbs sampler [20]. That is, use each

x P Xn to generate an MCMC chain via: x̃
i „ ppxi|x´iq, xi – x̃

i.
3. Use the samples from all chains as additional data for distillation.

We next describe these steps in detail but first let us see why this strategy can generate good augmented
data. If our conditional probability estimates ppxi|x´iq are accurate, the Gibbs sampler is guaranteed
to converge to samples drawn from ppxq regardless of the initialization [21]. In particular, initializing
the sampler with data x P Xn ensures that it doesn’t need time to ‘burn-in’; it starts immediately with
samples from the correct distribution. Even if ppxi|x´iq is inaccurate (inevitable for small n), the
sample x̃ will not deviate too far from ppxq after a small number of Gibbs sampling steps (low bias),
whereas using x̃ „ q with an inaccurate q would produce disparate samples.

4.1 Maximum Pseudolikelihood Estimation via Self-Attention

A cumbersome aspect of the strategy outlined above is the need to model many conditional dis-
tributions ppxi|x´iq for different i. This would traditionally require many separate models. Here
we instead propose a single self-attention architecture [22] with parameters ✓ that is trained to
simultaneously estimate all conditionals via a pseudolikelihood objective [23]:

p✓ “ argmax
✓

1

n

ÿ

xPXn

dÿ

i“1

log ppxi |x´i; ✓q (4)

For many models, maximum pseudolikelihood estimation produces asymptotically consistent pa-
rameter estimates, and often is more computationally tractable than optimizing the likelihood [23].
Our model takes as input px1

, . . . , x
dq and simultaneously estimates the conditional distributions

ppxi|x´i; ✓q for all features i using a self-attention-based encoder. As in Transformers, each encoder
layer consists of a multi-head self-attention mechanism and a feature-wise feedforward block [22].
Self-attention helps this model gather relevant information from x

´i needed for modeling x
i.

Each conditional is parametrized as a mixture of Gaussians ppxi|x´i; ✓q “ ∞K
k“1 �kNpxi;µk,�

2
kq,

where �k, µk,�k depend on x
´i and are output by topmost layer of our encoder after processing x

´i.
Categorical features are numerically represented using dequantization [24]. To condition on x

´i in a
mini-batch (with i randomly selected per mini-batch), we mask the values of xi to omit all information
about the corresponding feature value (as in [25]) and also mask all self-attention weights for input
dimension i; this amounts to performing stochastic gradient descent on the objective in (4) across
both samples and their individual features. We thus have an efficient way to compute any of these
conditional distributions with one forward pass of the model. While this work utilizes self-attention,
our proposed method can work with any efficient estimator of ppxi|x´iq for i “ 1, . . . , d.

Relation to other architectures. Our approach can be seen as an extension of the mixture density
network [26], which can model arbitrary conditional distributions, but not all conditionals simultane-
ously as enabled by our use of masked self-attention with the pseudolikelihood objective. It is also
similar to TraDE [27]: however, their auto-regressive model requires imposing an arbitrary ordering
of the features. Since self-attention is permutation-invariant [28], our pseudolikelihood model is
desirably insensitive to the order in which features happen to be recorded as table columns. Our
use of masked self-attention shares many similarities with BERT [25], where the goal is typically
representation learning or text generation [29]. In contrast, our method is designed for data that lives
in tables. We need to estimate the conditionals ppxi|x´i; ✓q very precisely as they are used to sample
continuous values; this is typically not necessary for text models.

4.2 Gibbs Sampling from the Learnt Conditionals

We adopt the following procedure to draw Gibbs samples rx to augment our training data: The sampler
is initialized at some training example x P Xn and a random ordering of the features is selected
(with different orderings used for different Gibbs chains started from different training examples).
We cycle through the features and in each step replace the value of one feature in rx, say rxi, using its
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conditional distribution given all the other variables, i.e. ppxi | x´i; p✓q. After every feature has been
resampled, we say one round of Gibbs sampling is complete, and proceed onto the next round by
randomly selecting a new feature-order to follow in subsequent Gibbs sampling steps.

A practical challenge in Gibbs sampling is that a poor choice of initialization may require many burn-in
steps to produce reasonable samples. Suppose for the following discussion that our pseudolikelihood
estimator and its learnt conditionals are accurate. We can use a strategy inspired by Contrastive
Divergence [30] and initialize the sampler at x P Xn and take a few (often only one) Gibbs sampling
steps. This strategy is effective; we need not wait for the sampler to burn in because it is initialized at
(or close to) the true distribution itself. This is seen in Fig. 2 where we compare samples from the true
distribution and Gibbs samples (taken with respect to conditional estimates from our self-attention
network) starting from an arbitrary initialization vs. initialized at Xn.

Figure 2: Initialization of the Gibbs sampler.
From left to right: original training data, samples
obtained from one round of Gibbs sampling with
random initialization after fitting the self-attention
network, samples obtained after multiple rounds
of Gibbs sampling (10 for the spiral, 100 for the
checkerboard density) with random initialization,
and samples obtained from one Gibbs sampling
round when initializing via Xn. The densities were
generated from examples in Nash and Durkan [31].

For distillation, we expect this sampling strategy to produce better augmented data. The number
of Gibbs sampling steps provides fine-grained control over the sample fidelity and diversity of the
resulting dataset used in distillation. Recall that the student will be trained over Xn YX

1
m in practice.

When our estimates of ppxi|x´iq are accurate, it is desirable to produce X 1
m only after a large number

of Gibbs steps, as the bias in (3) will remain low and we would like to ensure the X
1
m are more

statistically independent from Xn. With worse estimates of ppxi|x´iq, it is better to produce X
1
m

after only a few Gibbs steps to ensure lower bias in (3), but the lack of burn-in implies X 1
m are not

independent of Xn and may thus be less useful to the student during distillation. We dig deeper into
this phenomenon (for the special case of m “ n) in the following theorem.

Theorem 2 (Refinement of Lemma 1) Under the assumptions of Lemma 1, suppose the student g˚
minimizes Demppf, g,Xn Y X

1
nq where X

1
n are n samples drawn after k steps of the Gibbs sampler

initialized at Xn. Then there exist constants V, c, � ° 0 such that with probability • 1 ´ �:

Dpf, g˚
, pq § Demppf, g˚

, Xn Y X
1
nq `

c
4V pc ` �kq ´ log �

n
` �k (5)

�k “ kT
k
q p´pkTV is the total-variation norm between p and T

k
q p (the distribution of Gibbs samples

after k steps), where q denotes the steady-state distribution of the Gibbs sampler.

The proof (in Appendix D) is based on multi-task generalization bounds [32] and MCMC mixing
rates [33]. Since �k Ñ kT

k
q p ´ qkTV as k Ñ 8, we should use Gibbs samples from a smaller

number of steps when q is inaccurate (e.g. if our pseudolikelihood estimator is fit to limited data).

4.3 Training the Student with Augmented Data

While previous distillation works focused only on particular tasks [4, 5], we consider the range of
regression and classification tasks. Our overall approach is the same for each problem type:

1. Generate a set of augmented samples X 1
m “ tx1

kuk“1,...,m.
2. Feed the samples X 1

m as inputs to the teacher model to obtain predictions Y 1
m, which are the

predicted class probabilities in classification (rather than hard class labels), and predicted
scalar values in regression.

3. Train each student model on the augmented dataset pXn, Ynq Y pX 1
m, Y

1
mq.

In the final step, our student model is fit to a combination of both true labels from the data y as well
as as augmented labels y

1 from the teacher, where y
1 is of different form than y in classification

(predicted probabilities rather than predicted classes). For binary classification tasks, we employ the
Brier score [34] as our loss function for all students, treating both the probabilities assigned to the
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positive class by the teacher and the observed t0, 1u labels as continuous regression targets for the
student model. The same strategy was employed by Bucilua et al. [4] and it slightly outperformed
our alternative multiclass-strategy in our binary classification experiments. We handle multiclass
classification in a manner specific to different types of models, avoiding cumbersome students that
maintain a separate model for each class (c.f. one-vs-all). Neural network students are trained using
the cross-entropy loss which can be applied to soft labels as well. Random forest students can utilize
multi-output decision trees [35] and thus be trained as native multi-output regressors against targets
which are one-hot-encoded class labels in the real data and teacher-predicted probability vectors in
the augmented data. Boosted tree models are similarly used to predict vectors with one dimension per
class, which are then passed through a softmax transformation; the cross entropy loss is minimized
via gradient boosting in this case.

5 Experiments

Data. We evaluate various methods on 30 datasets (Table S2) spanning regression tasks from the UCI
ML Repository and binary/multi classification tasks from OpenML, which are included in popular
deep learning and AutoML benchmarks [1, 36–40]. To facilitate comparisons on a meaningful scale
across datasets, we evaluate methods on the provided test data based on either their accuracy in
classification, or percentage of variation explained (= R

2¨100) in regression. The training data are split
into training/validation folds (90-10), and only the training fold is used for augmentation (validation
data keep their original labels for use in model/hyper-parameter selection and early-stopping).

Setup. We adopt AutoGluon as our teacher as this system has demonstrated higher accuracy than
most other AutoML frameworks and human data science teams [1]. AutoGluon is fit to each training
dataset for up to 4 hours with the auto_stack option which boosts accuracy via extensive model
ensembling (all other arguments left at their defaults). The most accurate ensembles produced by
AutoGluon often contain over 100 individual models trained via a combination of multi-layer stacking
with repeated 10-fold bagging and the use of multiple hyperparameter values [1]. Each model trained
by AutoGluon is one of: (1) Neural Network (NN), (2) CatBoost, (3) LightGBM, (4) Random Forest
(RF), (5) Extremely Randomized Trees, and (6) K-Nearest Neighbors.

We adopt the most accurate AutoGluon ensemble (on the validation data) as the teacher model. We
use models of types (1)-(4) as students, since these are more efficient than the others and thus more
appropriate for distillation. These are also some of the most popular types of models among today’s
data scientists [41]. We consider how well each individual type of model performs under different
training strategies, as well as the overall performance achieved with each strategy after a model
selection step in which the best individual model on the validation data (among all 4 types) is used
for prediction on the test data. This Selected model reflects how machine learning is operationalized
in practice. All candidate student models (as well as the BASE models) of each type share the same
hyper-parameters and are expected to have similar size and inference latency.

5.1 Distillation Strategies

We compare our FAST-DAD Gibbs-augmented distillation technique with the following methods.

TEACHER: The model ensemble produced by AutoGluon fit to the training data. This is adopted as
the teacher in all distillation strategies we consider.

BASE: Individual base models fit to the original training data (trained in the usual manner).

KNOW: Knowledge distillation proposed by Hinton et al. [5], in which we train each student model
on the original training data, but with labels replaced by predicted probabilities from the teacher
which are smoothed and nudged toward the original training labels (no data augmentation).

MUNGE: The technique proposed by Bucilua et al. [4] to produce augmented data for model
distillation, where the augmented samples are intended to resemble the underlying feature distribution.
MUNGE augmentation may be viewed as a few steps of Gibbs sampling, where ppxi|x´iq is
estimated by first finding near neighbors of x in the training data and subsequently sampling from the
(smoothed) empirical distribution of their ith feature [43].

HUNGE: To see how useful the teacher’s learned label-distributions are to the student, we apply
a hard variant of MUNGE. Here we produce MUNGE-augmented samples that receive hard class
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(a) (b)

Figure 3: Fig. 3a Normalized metrics evaluated on samples from various Gibbs rounds (averaged across
3 datasets). Sample Fidelity measures how well a random forest discriminator can distinguish between (held
out) real and Gibbs-sampled data. Diffusion is the average Euclidean distance between each Gibbs sample and
the datum from which its Markov chain was initialized. Discrepancy is the Maximum Mean Discrepancy [42]
between the Gibbs samples and the training data; it measures both how well the samples approximate p as
well as how distinct they are from data Xn. Distillation Performance is the test accuracy of student models
trained on the augmented data (averaged over our 4 model types). The diversity of the overall dataset used for
distillation grows with increased discrepancy/diffusion, while this overall dataset more closely resembles the
underlying data-generating distribution with increased sample fidelity (lower bias). The discriminator’s accuracy
ranges between r0.49, 0.90s for these datasets. Fig. 3b Percentage points improvement over the BASE
model produced by each distillation method for different model types (change in: accuracy for classification,
explained variation for regression). As the improvements contain outliers/skewness, we show the median change
across all datasets (dots) and the corresponding interquartile range (lines).

predictions from the teacher as their labels rather than the teacher’s predicted probabilities that are
otherwise the targets in all other distillation strategies (equivalent to MUNGE for regression).

GAN: The technique proposed by Xu et al. [44] for augmenting tabular data using conditional
generative adversarial networks (GANs), which have been shown to produce higher-quality samples
than other deep generative models. As in our approach, this GAN is trained on the training set and
then used to generate augmented x samples for the student model, whose labels are the predicted
probabilities output by the teacher. Unlike our Gibbs sampling strategy, it is difficult to control how
similar samples from the GAN should be to the training data.

We also run our Gibbs sampling data augmentation strategy generating samples after various numbers
of Gibbs sampling rounds (for example, GIB-5 indicates 5 rounds were used to produce the augmented
data). Under each augmentation-based strategies, we add m synthetic datapoints to the training set
for the student, where m “ 10ˆ the number of original training samples (up to at most 106).

5.2 Analysis of the Gibbs Sampler

To study the behavior of our Gibbs sampling procedure, we evaluate it on a number of different
criteria (see Fig. 3a caption). Fig. 3a depicts how the distillation dataset’s overall diversity increases
with additional rounds of Gibbs sampling. Fortuitously, we do not require a large number of
Gibbs sampling rounds to obtain the best distillation performance and can thus efficiently generate
augmented data. Running the Gibbs sampling for longer is ill-advised as its stationary distribution
appears to less closely approximate p than intermediate samples from a partially burned-in chain; this
is likely due to the fact that we have limited data to fit the self-attention network.

5.3 Performance of Distilled Models

Table 1 and Fig. 3b demonstrate that our Gibbs augmentation strategy produces far better resulting
models than any of the other strategies. Table S3 shows the only datasets where Gibbs augmentation
fails to produce better models than the BASE training strategy are those where the teacher ensemble
fails to outperform the best individual BASE model (so little can be gained from distillation period).
As expected according to Hinton et al. [5]: KNOW helps in classification but not regression, and
HUNGE fares worse than MUNGE on multiclass problems where its augmented hard class-labels fail
to provide students with the teacher’s dark knowledge. As previously observed [4], MUNGE greatly
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Table 1: Average ranks/performance achieved by the Selected model under each training strategy across the
datasets from each prediction task. Performance is test accuracy for classification or percentage of variation
explained for regression, and we list p-values for the one-sided test of whether each strategy • BASE.

Strategy Rank Accuracy p Rank Accuracy p Rank Accuracy p

BASE 6.888 88.63 - 5.791 82.85 - 7.777 80.80 -
HUNGE 5.0 88.99 0.092 5.541 83.57 0.108 7.666 81.04 0.350
KNOW 6.555 88.49 0.712 5.25 83.89 0.072 5.555 81.39 0.275
GAN 6.666 88.65 0.450 6.708 83.17 0.250 6.055 82.26 0.069
MUNGE 5.444 88.88 0.209 5.083 83.72 0.126 4.333 82.80 0.007
GIB-1 3.777 89.35 0.025 3.708 84.21 0.051 3.277 82.88 0.005
GIB-5 3.333 89.25 0.004 5.375 84.04 0.098 3.388 82.76 0.010
GIB-10 4.777 89.09 0.044 4.958 83.74 0.087 4.222 82.64 0.010
TEACHER 2.555 90.10 0.036 2.583 84.40 0.019 2.722 83.84 0.018

Regression Problems Binary Classification Multiclass Classification

improves the performance of neural networks, but provides less benefits for the other model types
than augmentation via our Gibbs sampler. Overparameterized deep networks tend to benefit from
distillation more than the tree models in our experiments (although for numerous datasets distilled
tree models are still Selected as the best model to predict with). While neural nets trained in the
standard fashion are usually less accurate than trees for tabular data, FAST-DAD can boost their
performance above that of trees, a goal other research has struggled to reach [45–49].

Figs. 1, 4 and S1 depict the (normalized/raw) accuracy and inference-latency of our distilled models
(under the GIB-1 strategy which is superior to others), compared with both the teacher (AutoGluon
ensemble), as well as ensembles produced by H2O-AutoML [7] and AutoSklearn [2], two popular
AutoML frameworks that have been shown to outperform other AutoML tools [40, 50]. On average,
the Selected individual model under standard training (BASE) would be outperformed by these
AutoML ensembles, but surprisingly, our distillation approach produces Selected individual models
that are both more accurate and over 10ˆ more efficient than H2O and AutoSklearn. In multiclass
classification, our distillation approach also confers significant accuracy gains over standard training.
The resulting individual Selected models come close to matching the accuracy of H2O/AutoSklearn
while offering much lower latency, but gains may be limited since the AutoGluon teacher appears
only marginally more accurate than H2O/AutoSklearn in these multiclass problems.

6 Discussion

Figure 4: Raw test accuracy vs. speed of
individual models and AutoML ensembles,
averaged over binary classification datasets.
TEACHER denotes the performance of Auto-
Gluon; H2O and autosklearn represent the re-
spective AutoML tools. GIB-1 indicates the
results of FAST-DAD after 1 round of Gibbs
sampling. BASE denotes the student model fit
on the original data. GIB-1/BASE dots repre-
sent the Selected model.

Our goal in this paper is to build small, fast models that
can bootstrap off large, ensemble-based AutoML pre-
dictors via model distillation to perform better than they
would if directly fit to the original data. A key challenge
is the data to train the student are limited. We propose to
estimate the conditional distributions of all features via
maximum pseudolikelihood with masked self-attention,
and use Gibbs sampling to augment the data available
to the student. Our strategy neatly suits this application
because it: (i) avoids multivariate density estimation
(pseudolikelihood only involves univariate conditionals),
(ii) does not require separate models for each conditional
(one self-attention model simultaneously computes all
conditionals), (iii) is faster than usual MCMC (by initial-
izing the Gibbs sampler at the training data), (iv) allows
control over the quality and diversity of the resulting
augmented dataset (we can select samples from specific
Gibbs rounds unlike from, say, a GAN). We used the
high-accuracy ensembles produced by AutoGluon’s Au-
toML [1] to improve standard boosted trees, random
forests, and neural networks via distillation.
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Broader Impact Statement

This work will potentially impact the community in two main ways. Our proposal to use high-accuracy
AutoML ensembles followed by model distillation allows practitioners to deploy their favorite models,
but obtain significantly better accuracy than they could fitting these models directly to their data
in the standard fashion. Our work thus helps realize AutoML’s promise of strong performance on
diverse data while distilling its complexity. Furthermore, our improved model-agnostic distillation
strategy can help facilitate interpretability of accurate-but-opaque predictors by choosing a simple
understandable model as the student model.

While the majority of enterprise ML applications today involve tabular data and tree models, empirical
research on distillation has mostly focused on computer vision applications with only neural network
models. Thus, this paper serves a key segment of practitioners that has been overlooked. A major
difference in distillation with tabular data are the limited sample sizes of most people’s datasets,
which means augmentation during distillation is critical. We expect our work to have strong practical
impact for these medium/small-scale problems. By allowing practitioners to deploy simpler models
that retain the accuracy of their more complex counterparts, our work helps improve the cost of ML
inference, the reliability of deployments (student models are less opaque), and may open up new ML
applications that were once out of reach due to previously unachievable accuracy-latency limits.

The second avenue for impact is theoretical. The dramatic performance of deep networks on
modalities such as images, speech and text has not quite been replicated on tabular data; ensemble
methods are still the go-to-methods for such data. One reason for this gap is perhaps that it is difficult
to discover invariants for tabular data, in contrast to the pre-baked translation invariance of CNNs
for natural images. In the absence of a strong architectural inductive bias, it is important to heavily
augment the data to reduce the variance of fitting high-capacity models such as neural networks and
handle situations with limited amounts of data. Our work identifies a simple way to achieve this
augmentation, where Gibbs sampling is a natural fit that is computationally efficient (because we
only need to run a few rounds) and facilitates fine-grained control over the sample-quality vs. the
diversity of the augmented samples. Our study of augmentation in the distillation context is different
than most existing work on augmentation for supervised learning, where a popular strategy is to use
desired invariances that are known a priori to inspire augmentation strategies (since labels are not
available for the augmented data in this setting, one typically has to assume each augmented example
shares the same label as a real counterpart in the dataset).

Concerns. General concerns regarding model distillation include its potential use in “stealing”
(cloning) models hidden behind an API. We are not aware of documented occurrences of this practice
beyond academic research. This paper does not enhance the capabilities of such attacks as our
augmentation strategy to improve distillation requires access to the training data. Another concern is
models obtained through distillation may be less reproducible as one needs to repeat both the teacher-
training and the student-training exactly. This should be addressed through well-documented code
and saving the augmented dataset and all teacher/student/self-attention models to file. A final concern
is the role of distillation in model interpretability. Once somebody distills an opaque model into an
understandable model that almost retains the average performance of the original model, they may
become overconfident that they understand the operating behavior of the opaque model, even though
the distilled model may be a poor approximation in certain regions of the feature space (particularly
regions poorly represented in the training data due to selection bias). The data augmentation strategy
proposed in this paper may actually help mitigate this issue, but is by no means intended to resolve
it. For true insight, we recommend careful analysis of the data/models as opposed to the hands-off
AutoML + distillation approach presented here.
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