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Abstract

Inspired by traffic routing applications, we consider the problem of finding the
shortest path from a source s to a destination t in a graph, when the lengths of
the edges are unknown. Instead, we are given hints or predictions of the edge
lengths from a collection of ML models, trained possibly on historical data and
other contexts in the network. Additionally, we assume that the true length of any
candidate path can be obtained by probing an up-to-date snapshot of the network.
However, each probe introduces a latency, and thus the goal is to minimize the
number of probes while finding a near-optimal path with high probability. We
formalize this problem and show assumptions under which it admits to efficient ap-
proximation algorithms. We verify these assumptions and validate the performance
of our algorithms on real data.

1 Introduction

Routing traffic is a prototypical example of using large scale ML for finding shortest paths in graphs
where the state of the graph is constantly changing with time. Given the scale of the road network
with billions of road segments around the world [Strano et al., 2017], and low latency requirements
for the path search algorithms [Goldberg, 2007, Min and Wynter, 2011], integrating ML models that
compute edge or path lengths into the path search algorithms is a challenging problem. Further, the
architecture to serve route recommendations to users needs to deal with network data at different
levels of granularity [Baum et al., 2016, Delling et al., 2017, 2018].

Typically, the lengths, either for edges or paths, are computed by multiple ML models which use
some combination of historical network statistics as well as current state of the network [Yang et al.,
2004, de Fabritiis et al., 2008, Tchrakian et al., 2012]. These predicted lengths are then consumed by
the path searcher to generate route recommendations. The details of the ML models are opaque to
this path searcher. To handle any errors in the predicted lengths gracefully, the path searcher queries
a real-time traffic source that keeps a more accurate representation of the network [Cebecauer et al.,
2018] and gets updated at a much higher frequency and possibly on a much smaller fraction of the
network than the ML predictions. However, access to the traffic server is expensive: it consumes
critical time that affects the latency of serving the user request. Therefore, trading off between
the number of probes to the traffic server and error in the predicted lengths becomes an important
design decision in engineering an efficient and effective routing engine. Figure 1 summarizes the
architecture.
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In this paper, we study the setting where a path searcher has access to multiple predictions for path
lengths, potentially from multiple ML models. Using these predictions or hints, the searcher can
query or probe a traffic server to get the accurate length for any path. The goal is to compute the
shortest path between two end points with high probability using all the hints and a small a number
of probes to the real-time traffic server.

1.1 Model and Results

Figure 1: Architecture of a routing engine

For our theoretical results, we consider the prob-
lem of routing from a source s to sink t in a spe-
cialized network composed of n parallel edges
between s and t, each edge of different length.
Though this problem appears stylized, as we
discuss below, our main empirical contribution
is to show that the theory we develop for this
problem can be applied to routing in real-world
networks.

Going back to our stylized network, the true
length Lj of any edge j is unknown upfront.
Each of m predictors (or experts) makes a pre-
diction for each edge, where Pij denotes the
prediction of expert i for edge j. We can probe

any edge j (say via a traffic server) to obtain its true length Lj ; however, these probes consume server
resources and incur latency, and are hence expensive. The goal is to devise a probing strategy that
unearths the edge with minimum true length with as few probes as possible, with high probability.

Arbitrary Prediction Errors. We first consider the model where the predictions of the experts can
be arbitrary. Here, we cannot hope to recover the minimum length edge exactly unless we probe all
edges. We show that overcoming this barrier requires that our algorithm makes an error that is at least
the maximum error made by the best expert, as well as the maximum error on the minimum length
edge. On the other hand, we show that such an error can be achieved without performing any probes.
In essence, the model where experts can make arbitrary errors is too pessimistic and does not offer
much insight into algorithm development. For lack of space, we present this result in Appendix A in
the supplementary material.

Stochastic Prediction Errors. In Section 2, we therefore assume the prediction errors of the experts
are drawn randomly from known, independent distributions. In this case, by a simple application of
Bayes’ rule, the predictions {Pij} induce a posterior distribution over the true lengths {Lj}, where
the distributions for each edge are independent. In this case, we are given a bound � on the probability
that the minimum length edge found by probing is not the overall minimum length edge. We seek
to minimize the expected number of probes needed to achieve this bound. Such a probing strategy
could be adaptive, depending on the outcomes of the edges probed so far.

Our main technical contribution is a reduction of the above problem to adaptive submodular maxi-
mization, where the non-trivial aspect is the construction of an appropriate surrogate submodular
function to capture the outcome of the probing process. Using this reduction, we show a simple
greedy policy that probes a factor O(log2(n/�)) more edges in expectation, and achieves a constant
approximation to the probability � that the chosen edge is not the overall best edge.

Empirical Validation. Our theoretical model assumes parallel edges whose lengths follow indepen-
dent distributions. We can port such a model to real traffic networks where each s–t path in the traffic
network maps to one of the parallel edges. The main issue that arises in path routing is that paths can
overlap, and hence the path lengths can no longer be treated as independent random variables.

In Section 3, we empirically demonstrate how to overcome these obstacles on real-world data, and
reduce the overall probing problem to the parallel edge case. Towards this end, we analyze data from
the NYC traffic network. We show that conditioned on knowing the length of one canonical path,
the fluctuations in the lengths of the other paths are approximately independent. This reduces the
problem subsequent to probing the canonical path to the parallel edge case. We simulate the greedy
algorithm for the parallel edge case on our path data under the independence assumption, and show
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that with a small number of probes we are able to recover the optimal path in almost all instances,
validating its performance in practice.

1.2 Related Work

Stochastic Probing. Stochastic models for probing independent distributions have a rich history
in algorithm design, primarily due to applications in database query optimization [Munagala et al.,
2005, Deshpande et al., 2016, Liu et al., 2008] and wireless communication [Guha et al., 2006]. In
these problems, we are given n independent distributions each of which can be probed at a certain
cost, revealing its true value. These problems either have a bound on the number of probes, or seek
to minimize the expected probing cost in order to optimize a certain objective over the probed and
unprobed values. Of particular relevance is the question of adaptively probing at most k distributions
to minimize the smallest value discovered among the probed distributions [Goel et al., 2006]. A
related problem is the Pandora’s problem [Guha et al., 2006, Beyhaghi and Kleinberg, 2019] that
seeks to maximize the largest value found minus the total probing cost spent in discovering the value.
Typical approaches to solving these problem involve greedy strategies that are based on submodularity

of objectives such as the maximum of a set of distributions. A general adaptive greedy algorithm
for such problems, which probes the next distribution conditioned on the values seen so far, was
presented in Golovin and Krause [2011]. The performance guarantee requires submodularity to hold
for every realization of probed values so far.

Our work is different from formulations considered in query optimization and wireless communication
in that we seek to do more than simply approximate the smallest value found; instead we seek to find
the true smallest value (had we probed all the distributions) with high probability. This makes a direct
application of adaptive submodularity infeasible, and we make our main technical contribution of
using a surrogate submodular function to model our objective.

Stochastic Shortest Paths. Our work is also related to the body of literature on shortest paths

under uncertainty. It is typically assumed that edge lengths follow known independent distributions.
A canonical problem is to find an s–t path whose length is below a threshold L with highest
probability. When the edge length distributions are Gaussian, Nikolova et al. [2006] present a quasi-
polynomial time algorithm for this problem via connections to quasi-convex maximization. However,
no generalization is known when the distributions are not Gaussian. A related probing problem is
the Canadian Traveler Problem [Nikolova and Karger, 2008, Papadimitriou and Yannakakis, 1991],
where the length of an edge is revealed when we reach one of its end-points. The goal is to find an
adaptive routing policy from s to t that has minimum expected length; such a policy could backtrack
on edges it has already seen. There are no efficient algorithms known for this problem, except under
special assumptions such as no backtracking [Bnaya et al., 2009]. The difficulty is that though edge
lengths are independent, the path lengths can be arbitrarily correlated and this can make the problem
intractable in the worst case.

In light of this worst-case difficulty, we take a more data-centric approach. We show that on realistic
instances, the path lengths are roughly independent conditioned on knowing the length of one path.
This reduces the problem to a simpler probing problem over independent distributions, and we extend
machinery based on adaptive submodular function maximization to solve it.

Online Problems with Hints. Adaptive or online algorithms with machine learning predictions
has recently been popular for a variety of problem domains. Traditionally, in online algorithms,
the future is assumed to be entirely unknown to the algorithm, which often results in pessimistic
solutions. In contrast, recent research has focused on incorporating machine learning predictions in
online algorithms to obtain more optimistic bounds if the predictions are correct, but preserve the
robustness of the classic model in case the predictions turn out to be inaccurate. This model has been
applied to a wide variety of problems including rent or buy problems [Purohit et al., 2018, Gollapudi
and Panigrahi, 2019], caching [Lykouris and Vassilvtiskii, 2018], scheduling [Lattanzi et al., 2020],
frequency estimation [Hsu et al., 2019], Bloom filters [Mitzenmacher, 2018], and so on.

In the context of probing for shortest paths, we assume each machine learning expert makes a
prediction for the length of each edge. However, unlike prior work that admits positive results even
when experts can make arbitrary errors, we show that if the experts can be arbitrarily inaccurate, the
bounds we obtain for shortest paths are still too pessimistic. We therefore need to make stochastic
assumptions on the accuracy of the experts themselves. In essence, this reduces to a stochastic
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probing problem where the distribution on edge lengths is induced by the noise distributions of the
experts, and making any weaker assumptions on the experts leads to pessimistic bounds.

2 Stochastic Prediction Error Model

In this section, we consider the following simple, yet canonical, graph model. The graph consists of
n parallel paths between s and t. We assume that there are m predictors (or experts) that predict a
length for each of the n edges. Pij denotes the ith expert’s prediction for the jth edge, and the true
length of the edge is denoted by Lj .

In Appendix A (see supplementary material), we consider the case where we do not have any
assumptions on the predictions. In this case, we show lower bounds that make it difficult to obtain
non-trivial algorithms. In particular, we present examples illustrating that if the predictions are
adversarial, then probing does not offer much advantage.

We now show that if we make stochastic assumptions on the predictions, specifically that a predictor’s
error on each edge is randomly distributed (according to a known distribution, which can potentially
be obtained from historic data), then an adaptive greedy probing strategy is provably effective.

Stochastic Model. Our approach has two main steps. The first is to use the assumptions on the
predictors’ errors to obtain a posterior distribution for the length of each path. Next, we develop a
strategy for probing the paths that takes these distributions into account, and aims to maximize the
probability of finding a near-minimal path with as few queries as possible.

We assume there is a prior distribution Dj over the edge length of j. Given the true edge length Lj ,
each expert outputs a prediction Pij = Lj + ⌘ij , where the error ⌘ij is drawn from a known indepen-
dent distribution. Given the predictions {Pij}, we can use Bayes’ rule to compute a distribution Xj

over the true length Lj for each edge j as:

gj(L) = Pr[Xj = L] =

Q
i
Pr [⌘ij = Pij � L] · Pr[Dj = L]P

L0
Q

i
Pr [⌘ij = Pij � L0] · Pr[Dj = L0]

In what follows, we will therefore ignore the predictions, and simply assume access to the conditional
distributions Xj for each edge j. We denote by E the set of all edges, and assume |E| = n.

2.1 Adaptive Probing Strategies

We can thus formalize the probing question as follows: we have n paths between s and t. The length
of path j is a random variable Xj with density function gj . Moreover, the {Xj}nj=1 are independent
r.v.s. We assume for notational simplicity that Xj are all discrete and have the common support ⇤.
As all the paths are independent, we can view them as single edges, without loss of generality. When
we probe/query an edge, we observe a realization of Xj .

Our goals are the following: (a) make as few probes as possible, (b) maximize the probability of
finding an edge that is within ✏ of minj Xj , where ✏ is a given accuracy parameter. The accuracy
parameter captures the idea that a small amount of sub-optimality is acceptable in most situations
(e.g., a finding a path that takes a few minutes longer than optimal).

Formally, a probing policy is described by a tree. At every step, we have a collection of observations

(values of edges probed so far). Based on these values, a new edge is probed, and we see a realization
of the length of that edge. At some point, the policy terminates (stops probing) and outputs the
shortest edge seen so far. We say that a policy succeeds with parameters (✏, �) if at any termination, if
we denote by S the set of edges probed so far and by L the minimum probed edge length, we have:

Pr


min
j /2S

Xj  L� ✏

�
 � 8(S,L). (1)

Objective. Given ✏, � > 0, the goal is to find a probing policy ⇡ that succeeds with parameters
(✏, �), such that the expected number of probes is minimized. The expectation is over the realizations
of the values of Xj . Our main result is the following:
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Theorem 2.1. Let ✏, � > 0 be given parameters, and suppose Xj are independent random variables

whose distributions gj are known. Suppose there exists a probing strategy ⇡⇤
that succeeds with pa-

rameters (✏, �) and makes OPT probes in expectation. Then the adaptive greedy strategy (Algorithm 1)

succeeds with parameters (✏, 3�) and makes O(OPT · log(n/�)) probes in expectation.

2.2 Background: Adaptive Submodularity

We use the adaptive submodularity framework of Golovin and Krause [2011]. We begin with some
notation and definitions. Let E = {e1, e2, . . . , en} denote the n edges. Recall that Xj is the random
variable denoting the length of ej . It has the density function gj .
Definition 2.2 (Golovin and Krause [2011]). Let us define the following terms:

• A realization � is an assignment of lengths to all the edges. Specifically, � : E 7! R, and

the probability of this realization (since Xj are independent) is
Q

j
Pr[Xj = �(ej)].

• An observation (or partial realization)  consists of a subset S of the edges along with

their realized lengths. S is called the domain of  . Formally, we view  as a set of pairs

(e, `), for e 2 S (there is exactly one pair for each e 2 S). Since only the smallest observed

matters for many of our arguments, we sometimes write  = (S,L), where S is the queried

set, and L is the minimum observed length.

• We say that an observation  is consistent with a realization � if �(e) = ` for all pairs

(e, `) 2  . We write this as  ⇠ �.

• For two observations  = (S,L), 0 = (S0, L0), we say that  �  0
if every pair (e, `) in

 is also in  0
. This implies that S ✓ S0

and L � L0
.

The main quantity of interest is the function f : 2E ⇥ ⇤E 7! R (recall that ⇤ is the set of all possible
edge lengths). Suppose we probed a subset S of edges, f(S,�) denotes a “utility” we associate with
the probes S for the realization �. In our application, the value of f(S,�) will only depend on S and
the values �(S); i.e., they do not depend on the lengths of the edges E \ S. Such a function satisfies
the so-called self-certifying property, defined in Golovin and Krause [2011]. Formally, if we have a
realization � and an observation  = (S,L) that is consistent, f is said to have the self-certifying
property if f(S,�) = f(S,�0) for all other realizations �0 such that  ⇠ �0. This property holds, in
particular, if f only depends on  (as will be the case for us).

We consider functions f where for all realizations �, f(;,�) = 0 and f(E,�) = Q, for some
parameter Q. In other words, if we make no queries, the utility is 0 and if all edges are queried,
the utility is Q. The framework of Golovin and Krause [2011] aims to query a small set S, while
achieving an f() value of Q. This turns out to be possible if f satisfies certain structural properties,
that we now define.
Definition 2.3 (Monotonicity). Let  be an observation with domain S, and let e 62 S and ` 2 ⇤.

Define  0 =  [ {(e, `)}. f is said to be strongly adaptive monotone for all (e, `) as above, we have

E�[f(S,�) |  ⇠ �]  E�[f(S [ {e},�) |  0 ⇠ �].

The expectations above are over all the � that are consistent with the corresponding  . In the case
when f is only dependent on  (as will be the case for us), the above is equivalent to f( )  f( 0).

A second property we need is related to submodularity. Before defining this, let us introduce another
notation. Let  and  0 be observations with domains S and S0 respectively, and let  �  0. Let
e 2 E \ S0. Define

�(e| ; 0) := E�

⇥
f(S [ {e},�)� f(S,�) |  0 ⇠ �

⇤
.

The expectation runs over all � consistent with  0. Since e /2 S0, the expectation runs over all the
realized lengths of the edge e. We can now define strong adaptive submodularity as follows:
Definition 2.4. [Submodularity] A function f is strongly adaptive submodular if for all  , 0, e as

above, we have �(e| ; 0) � �(e| 0; 0). In other words, conditioned on a realization consistent

with  0
, the marginal increase in f is at least as large when e is probed in  compared to  0

.
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Given the above definitions, the main result in Golovin and Krause [2011] is about the adaptive
GREEDY algorithm: At each step, given an observation  = (S,L), probe the edge e /2 S that
maximizes �( , e; ), stopping when f > Q� ⌘ for suitably chosen ⌘.

Consider all adaptive policies that only stop when f > Q� ⌘, and among them, let ⇡⇤ minimize the
expected number of probes. Let this optimal expected number of probes be denoted OPT.
Theorem 2.5 (Golovin and Krause [2011]). Suppose f is self-certifying, strongly adaptive monotone,

and strongly adaptive submodular. Further, suppose ⌘ is such that f(S,�) > Q � ⌘ implies

f(S,�) = Q. Then GREEDY has expected number of probes at most O

✓
OPT ·

⇣
ln
⇣

Q

⌘

⌘
+ 1

⌘2
◆
.

2.3 Surrogate Submodular Function

Let us now see how to apply the methods of Golovin and Krause [2011] to our setting. A natural
way to define f is as follows: after querying S, the probability that none of the non-queried edges
has a length significantly smaller than the minimum length of edges in S. Formally, f(S,�) =
1 � Pr[minej /2S Xj  L � ✏], where L = mine2S �(e). This function satisfies the self-certifying
property, since it does not depend on the realized lengths of edges not in S. However, it does not
satisfy (strong) adaptive submodularity.
Example 1. Consider two edges a, b. Suppose Xa is 1/4 w.p. 1/2 and 3/4 w.p. 1/2. Suppose

Xb is 0 w.p. 1/2 and 1/2 w.p. 1/2. Now, consider the two observations  = ; (no queries) and

 0 = {(b, 1/2)} (i.e., b was queried and the observed value is 1/2). Now, we have �(a| ; 0) = 1/4,

while �(a| 0; 0) = 1/2. This violates Definition 2.4.

To circumvent this problem, we use a linear surrogate function for which all the prerequisites for
Theorem 2.5 hold. Recall that gj(`) = Pr[Xj = `] for all ` 2 ⇤, and that E = {e1, e2, . . . , en}. Let
Hj(L) = Pr[Xj  L� ✏]. Given an observation  = (S,L) and a realization � that is consistent,
define the surrogate function f as:

f(S,�) = n�
X

ej /2S

Hj(L) = |S|+
X

ej /2S

(1�Hj(L)) . (2)

If no edges are probed, we set L = 1, so that
P

ej /2S
Hj(L) = n, and f(;,�) = 0 for all �.

Further, note that f(E,�) = n for all �. Also, we clearly have that f(S,�) depends only on the
values of �(S), and thus f satisfies the self-certifying property. We now show that it also satisfies
Definitions 2.3 and 2.4.
Theorem 2.6. The function f in (2) is strongly adaptive monotone and strongly adaptive submodular.

Proof. We first show submodularity. Let  0 = (S0, L0) and  1 = (S1, L1) be two observations
such that  0 �  1. Thus S0 ✓ S1 and L0 � L1. Consider some edge ek 2 E \ S1. Then, noting
that f(S0,�) depends only on  0 and not on the realized lengths of edges not in S0, we have:

�(k| 0; 1) =

0

@n�
X

`

gk(`)
X

ej /2S0[{ek}

Hj (min(L0, `))

1

A�

0

@n�
X

ej /2S0

Hj(L0)

1

A

= Hk(L0) +
X

`L0

gk(`)

0

@
X

ej /2S0[{ek}

(Hj(L0)�Hj(`))

1

A

Similarly, we have: �( 1, k; 1) = Hk(L1) +
P

`L1
gk(`)

⇣P
ej /2S1[{ek} (Hj(L1)�Hj(`))

⌘
.

Since S0 ✓ S1, the latter summation is over fewer terms j. Similarly, since L1  L0, the latter
summation is also over fewer terms `. Since for L1  L0, we have Hj(L1)  Hj(L0), each term
in the latter summation is also smaller. Therefore, we have �( 0, k; 1) � �( 1, k; 1) showing
strong adaptive submodularity.
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To show monotonicity, consider an observation  = (S,L) and let e /2 S and ` 2 ⇤. Define
 0 =  [ {(e, `)}. Then we have

E�[f(S,�) |  ⇠ �] = n�
X

ej 62S

Hj(L),

E�[f(S [ {e},�) |  0 ⇠ �] = n�
X

ej 62S,ej 6=e

Hj(min(L, `)).

The latter summation is over one less edge, and moreover, Hj(min(L, `))  Hj(L). Therefore, the
latter summation is at most as large as the former, which implies the condition in Definition 2.3.

2.4 The GREEDY Algorithm

We now show how to use the surrogate f above to prove Theorem 2.1. We start with the following
claim that helps us relate the success criterion in the algorithm with f defined in (2).
Claim 1 (Proved in Appendix B in supplementary material). Let �  1/2 and let  = (S,L) be

an observation. For any S,L, we have Pr[minej /2S Xj  L � ✏] 
P

ej /2S
Hj(L). Moreover, if

Pr[minej /2S Xj  L� ✏]  �, then
P

ej /2S
Hj(L)  2�.

We now show how to use Theorem 2.5 to prove our main result, Theorem 2.1. To apply Theorem 2.5
directly, we introduce the following discretization. Define Ĥj(L) to be Hj(L), rounded down to the
nearest multiple of �

n
, where � is the parameter from Theorem 2.1. Define Q = n� 3�, and let

f̂(S,�) = min

8
<

:Q, n�
X

ej 62S

Ĥj(L)

9
=

; , where L = min
e2S

�(e) as before.

Note that whenever f̂(S,�)  Q, we have |f̂(S,�)� f(S,�)| < � (because the error in each of the
Ĥ terms is < �/n). We are now ready to state GREEDY in Algorithm 1. (Note that f̂(S,�) can be
computed just using  when checking the condition of the while loop.)

Algorithm 1 Greedy probing

1: Input: Probability density functions {gj}nj=1 for edges, Hj(L) as defined, parameters ✏, �
2: S  ;, = ;
3: Define Ĥj(L) as Hj(L) rounded down to nearest multiple of �/n, for all L
4: while f̂(S,�)  Q� ⌘ do
5: Find ej 62 S that maximizes �(j| ; ) (where � measures change in f̂ )
6: Probe the length of ej to get value `. Add (ej , `) to  
7: end while
8: Return S

We then note that the function f̂ is also self-certifying, strongly adaptive monotone, and strongly
adaptive submodular. This follows because the proofs only rely on the monotonicty of H (which
also holds for Ĥ) and the fact that summations involve fewer terms (which continues to hold).
Thus, Theorem 2.5 applies to Algorithm 1, which lets us complete the proof of Theorem 2.1 (see
Appendix B in the supplementary material for the full details).

3 Routing in Traffic Networks: Model and Experiments

The main assumption in Section 2 was that the lengths of the parallel paths are independent. This
allowed us to find the distributions gj(L) independently for different paths, by taking into account
the predictions. In practice, congestion on one path causes users to take alternate paths which also
tend to get congested, and this may violate independence. However, we observe that once we probe
and determine the (true) length of one of the paths, the fluctuations in the lengths of the other are
independent. We first present the model and subsequently demonstrate its validity on real data.
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(a) (b) (c)

Figure 2: An example of three alternate routes for a query in the New York road network. Routes (b)
and (c) have independent travel times after conditioning on the travel time of the canonical route (a).

0 5 · 10�2 0.1 0.15 0.2 0.25

0’-10’

10’20’

20’-30’

30’-40’

0 5 · 10�2 0.1 0.15 0.2 0.25 0.3

0-30%

30-60%

60-90%

Figure 3: Pearson correlation coefficient between the lengths of two paths plotted by the length of the
canonical path (left) and the overlap between them (right).

Model for Traffic Networks. Specifically, we designate one canonical path, which typically is the
one that has the smallest travel time under free flow conditions (i.e., without any traffic congestion).
We show that, once the length of the canonical path is probed, the lengths of the other paths have
very low correlation. In other words, to a fairly good approximation, the dependencies among path
lengths can be captured using a tree graphical model of depth two.

Formally, let s, t be the source and destination, and let P1,P2, . . . ,Pm be a collection of paths, where
P1 is the canonical path. Let Xj be the random variable that denotes the length of Pj . Then for any
length `, the random variables {(Xj | X1 = `)} are all independent.

3.1 Experiments and Evaluation

We now use a dataset of link travel times in New York City to motivate the above model, and evaluate
the performance of our greedy algorithm. This dataset contains hourly average traffic speeds on
road segments throughout New York City. It covers four years of traffic estimates in New York City
estimated from approximately 700 million taxi trips from 2010-2013 [Donovan and Work, 2017].

Testing Independence Assumption. For 1, 000 randomly sampled source-destination queries, we
generate candidate paths using the plateau alternates method [Abraham et al., 2010]. For each one,
we condition on the true length of the canonical path and compute the absolute value of the Pearson
correlation coefficient between an arbitrary pair of (non-canonical) paths. Averaging over 1, 000
such iterations gives 0.11 for the average absolute value of the correlation coefficient, thus providing
evidence of weak correlation. Moreover, our experiments show that the coefficient remains largely
constant as the canonical path length and the overlap between the paths vary. Details are given in
Figure 3, and we present an example of such alternate paths in Figure 2.

Performance of GREEDY. Finally, we evaluate the GREEDY algorithm on this data. The setup is as
follows. For each source-destination pair, we fix a canonical path p0 and its length ` (at a certain
time). For every other path p, the distribution Xp used is the discrete, empirical distribution of its
path length in all past time steps where length of p0 is within ±5% of `. We use two different values
for parameter �⇤: �⇤ = 0.1 and �⇤ = 0.01. We set ✏ = 0, so that we seek an exact shortest path with
probability 1 � �⇤. We almost always recover the optimal path in the set with a small number of
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probes. Specifically, with �⇤ = 0.01, the algorithm successfully identified the optimal path in all
1, 000 iterations, whereas with �⇤ = 0.1, it did so in 966 of them. For comparison, Dijkstra using
historical averages recovers the optimal path in 565 of the instances. Table 1 shows the dependence
of number of probes changes on the number of alternates available as �⇤ changes. We note that it was
not possible to identify all edge lengths with a small number of probes as, on average, 88% of the
candidate paths had a unique subpath. If the distributions are weakly correlated, submodularity will
not necessarily hold. Our experiments also show that the greedy algorithm can be effective (though it
will lose its theoretical guarantee) even when path lengths are weakly correlated.

4 Conclusion

# Alternates 10 20 30 40
# Probes (�⇤ = 0.01) 2.42 3.67 5.03 9.54
# Probes (�⇤ = 0.1) 1.75 2.43 2.95 4.02

Table 1: The average number of probes made by
GREEDY for different numbers of candidate paths.

In this paper, we presented a simple model and
algorithm for probing for a shortest path with
machine learnt advice. We validated the model
assumption and algorithm on real-world data.
As future work, we will study how to incorporate
weaker stochastic assumptions, such as the edge
independence model in Nikolova et al. [2006],
as well as weaker models of expert advice than
the assumption that the errors are independent
and stochastic. Of particular interest is combin-
ing our results with sample complexity bounds for learning the error distributions.

Broader Impact

Our work has consequences to the design and implementation of algorithms in large-scale traffic
routing applications. Our model is simple and easily applicable to settings where expert advice can
be used to refine the choice of routes. At the same time, we make a methodological contribution by
showing that for the canonical objective of probing to find the best value with high probability has a
submodular surrogate that enables an efficient greedy probing strategy.
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